标签:hat ade pos 键值对 enqueue ever runners session not
最佳组合代码模式为:# Create the graph, etc.
init_op = tf.global_variables_initializer()
# Create a session for running operations in the Graph.
sess = tf.Session()
# Initialize the variables (like the epoch counter).
sess.run(init_op)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
while not coord.should_stop():
# Run training steps or whatever
sess.run(train_op)
except tf.errors.OutOfRangeError:
print(‘Done training -- epoch limit reached‘)
finally:
# When done, ask the threads to stop.
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
sess.close()
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 10:54:53 2018
@author: myhaspl
@email:myhaspl@myhaspl.com
读取文件
"""
import tensorflow as tf
import os
g=tf.Graph()
with g.as_default():
#生成文件名队列
fileName=os.getcwd()+"/1.csv"
print fileName
fileNameQueue=tf.train.string_input_producer([fileName])
#生成记录键值对
reader=tf.TextLineReader(skip_header_lines=1)
key,value=reader.read(fileNameQueue)
recordDefaults=[[""],[1],[1]]
decoded=tf.decode_csv(value,record_defaults=recordDefaults)
name,age,source=tf.train.shuffle_batch(decoded,batch_size=2,capacity=2,min_after_dequeue=1)
features=tf.transpose(tf.stack([age,source]))
with tf.Session(graph=g) as sess:
# 开始产生文件名队列
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print sess.run(features)
coord.request_stop()
coord.join(threads)
[[32 99]
[36 75]]
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 10:54:53 2018
@author: myhaspl
@email:myhaspl@myhaspl.com
读取文件
"""
import tensorflow as tf
import os
g=tf.Graph()
with g.as_default():
#生成文件名队列
fileName=os.getcwd()+"/1.csv"
fileNameQueue=tf.train.string_input_producer([fileName])
#生成记录键值对
reader=tf.TextLineReader(skip_header_lines=1)
key,value=reader.read(fileNameQueue)
recordDefaults=[[""],[1],[1]]
decoded=tf.decode_csv(value,record_defaults=recordDefaults)
name,age,source=tf.train.shuffle_batch(decoded,batch_size=2,capacity=2,min_after_dequeue=1)
features=tf.stack([age,source])#此处不转置
with tf.Session(graph=g) as sess:
# 开始产生文件名队列
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print sess.run(features)
print sess.run(key)#文件名
print sess.run(value)#读取一行的内容
coord.request_stop()
coord.join(threads)
[[32 36]
[99 75]]
/Users/xxxxx/Documents/AIstudy/tf/1.csv:3
lisi,36,75
$ cat 1.csv
name,age,source
zhanghua,32,99
liuzhi,29,69
lisi,36,75
标签:hat ade pos 键值对 enqueue ever runners session not
原文地址:http://blog.51cto.com/13959448/2335460