码迷,mamicode.com
首页 > 其他好文 > 详细

[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

时间:2019-01-01 23:51:59      阅读:161      评论:0      收藏:0      [点我收藏+]

标签:cas   eth   hub   check   you   ===   common   keep   commit   

Let‘s say we have two strings:

str1 = ‘ACDEB‘

str2 = ‘AEBC‘

We need to find the longest common subsequence, which in this case should be ‘AEB‘.

 

Using dynamic programming, we want to compare by char not by whole words.

  • we need memo to keep tracking the result which have already been calculated
    •   memo is 2d array, in this case is 5 * 4 array.
  • It devided problem into two parts
    •   If the char at the given indexs for both strings are the same, for example, ‘A‘ for str1 & str2, then we consider 
‘A‘ + LSC(str1, str2, i1 + 1, i2 + 1)
    • If the char at the given indexs are not the same, we pick max length between LCB(‘DEB‘, ‘EBC‘) & LCB(‘CDEB‘, ‘BC‘),  we pick
Max {
   LCS(‘DEB‘, ‘EBC‘),
   LCS(‘CDEB‘, ‘BC‘)
}

Bacislly for the str1 = ‘CDEB‘ str2 = ‘EBC‘, the first char is not the same, one is ‘C‘, another is ‘E‘, then we devide into tow cases and get the longer one. The way to devide is cutting ‘C‘ from str1 get LCS(‘DEB‘, ‘EBC‘), and cutting ‘E‘ from str2 get LCS(‘CDEB‘, ‘BC‘).

 /**
 * FIND THE LONGEST COMMON SEQUENCES BY USING DYNAMICE PROGRAMMING
 *
 * @params:
 * str1: string
 * str2: string
 * i1: number
 * i2: number
 * memo: array []
 *
 * TC: O(L*M) << O(2^(L*M))
 */

function LCS(str1, str2) {
    const memo = [...Array(str1.length)].map(e => Array(str2.length));
  
    /**
     * @return longest common sequence string
     */
    function helper(str1, str2, i1, i2, memo) {
      console.log(`str1, str2, ${i1}, ${i2}`);
      // if the input string is empty
      if (str1.length === i1 || str2.length === i2) {
        return "";
      }
      // check the memo, whether it contians the value
      if (memo[i1][i2] !== undefined) {
        return memo[i1][i2];
      }
      // if the first latter is the same
      // "A" + LCS(CDEB, EBC)
      if (str1[i1] === str2[i2]) {
        memo[i1][i2] = str1[i1] + helper(str1, str2, i1 + 1, i2 + 1, memo);
        return memo[i1][i2];
      }
  
      // Max { "C" + LCS(DEB, EBC), "E" + LCB(CDEB, BC) }
      let result;
      const resultA = helper(str1, str2, i1 + 1, i2, memo); // L
      const resultB = helper(str1, str2, i1, i2 + 1, memo); // M
  
      if (resultA.length > resultB.length) {
        result = resultA;
      } else {
        result = resultB;
      }
  
      memo[i1][i2] = result;
      return result;
    }
  
    return {
      result: helper(str1, str2, 0, 0, memo),
      memo
    };
  }
  
  //const str1 = "I am current working in Finland @Nordea",
  //str2 = "I am currently working in Finland at Nordea";
  
  const str1 = "ACDEB",
    str2 = "GAEBC";
  
  const { result, memo } = LCS(str1, str2);
  console.log(
    `
     ${str1}  
     ${str2}
     s longest common sequence is 
     "${result === "" ? "Empty!!!" : result}"
    `
  );
  
  console.log(memo);
  

 

 

Source, Code

[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

标签:cas   eth   hub   check   you   ===   common   keep   commit   

原文地址:https://www.cnblogs.com/Answer1215/p/10206497.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!