码迷,mamicode.com
首页 > 其他好文 > 详细

数学模型的过拟合和欠拟合

时间:2019-01-02 00:04:48      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:验证   样本   span   业务   rop   集中   逻辑或   1.2   增加   

1. 过拟合

1.1 产生原因

  • 训练集中的数据抽取错误,太少,或者不均衡,不足以有效代表业务逻辑或场景;
  • 训练集中的数据噪音(异常值)干扰过大;
  • 训练模型的“逻辑假设“到了模型应用时已经不能成立
  • 参数太多,模型复杂度太高;
  • 特征量太多,模型训练过度,比如决策树模型,神经网络模型

1.2 解决方法

  • 减少特征数量
  • 正则化
  • 增大样本训练规模,采样均衡
  • 简化模型
  • 交叉验证
  • 去除异常值
  • Dropout

2. 欠拟合

1.1 产生原因

  • 模型复杂度过低
  • 特征量过少

1.2 解决方法

  • 增加新特征
  • 增加模型复杂度
  • 减少正则化系数

数学模型的过拟合和欠拟合

标签:验证   样本   span   业务   rop   集中   逻辑或   1.2   增加   

原文地址:https://www.cnblogs.com/JTay/p/10206487.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!