码迷,mamicode.com
首页 > 其他好文 > 详细

CF1096E The Top Scorer

时间:2019-01-02 12:55:38      阅读:170      评论:0      收藏:0      [点我收藏+]

标签:技术分享   def   splay   www   codeforce   close   bubuko   sed   target   

 

http://codeforces.com/problemset/problem/1096/E

题意:

一场游戏有p人参加,得分总和为s分,每个人的分数都是非负整数,且其中一号玩家的得分至少为r

而现在不知道具体的得分情况,求一号玩家获胜的概率,我们认为任何一种合法的得分情况出现的概率相等

得分最高的玩家获胜,特殊的,若有多人得分相同,他们获胜的几率相同

1≤p≤100,0rs5000,要求答案对998244353取模


 

这题考试的时候连暴力都没想出来555

看题解后,感觉到了一种套路。。。

设 g(s,p,m)=(在一场总分和s,玩家数p的游戏中,没有人得分超过m的合法状态数)

这东西dp起来蛮简单(的吧?),但是你会发现他的复杂度有点难以接受。。。但这至少给我们一个启示?

  • 遇到获胜等设计随机状态中涉及最大值的问题,可以试着转化成一些“不超过”问题的组合

我们试着用数学方法解决这个问题吧

 技术分享图片

这个 这个公式出自隔板法和容斥原理,请允许我解释一下

首先看容斥,简单来说就是想计算 所有情况-至少一个人超过m+至少两个人超过m-至少三个人超过m……

然后看隔板法,如何计算有i个人超过m呢?先选出i个人C(p,i),给每个人先分配m+1个,就变成了箱子内剩余数可以为零的经典隔板问题

这个式子在有预处理的帮助下的代价是O(p)

有了g之后呢,答案f貌似就很好计算了,搬个公式大家自己体会吧~

技术分享图片

总复杂度:O(s*p2)

技术分享图片
 1 #include<cstdio>
 2 #define ll long long
 3 #define mod 998244353
 4 using namespace std;
 5 ll ksm(ll x,ll t){ll ans=1;for(;t;t>>=1,x=(x*x)%mod)if(t&1)ans=(ans*x)%mod;return ans;}
 6 int p,s,r;
 7 ll fac[6005],invf[6005];
 8 void pre(){
 9     fac[0]=1;
10     for(int i=1;i<=p+s;i++)fac[i]=(fac[i-1]*i)%mod;
11     invf[p+s]=ksm(fac[p+s],mod-2);
12     for(int i=p+s-1;i>=0;i--)invf[i]=(invf[i+1]*(i+1))%mod;
13 }
14 ll C(ll n,ll m){
15     if(n<0||m<0||m>n)return 0;
16     return ((fac[n]*invf[n-m])%mod*invf[m])%mod;
17 }
18 ll ans;
19 ll g(ll s,ll p,ll m){
20     if(p==0&&s==0)return 1;
21     ll tot=0;
22     for(int i=0,t=1;i<=p;i++){
23         tot+=t*(C(p,i)*C(s+p-1-i*(m+1),p-1)%mod);
24         tot=(tot+mod)%mod;
25         t*=-1;
26     }
27     return tot;
28 }
29 int main(){
30     scanf("%d%d%d",&p,&s,&r);
31     pre();
32     for(int t=r;t<=s;t++)
33     for(int q=1;q<=p;q++){
34         ans+=((C(p-1,q-1)*ksm(q,mod-2)%mod)*g(s-q*t,p-q,t-1))%mod;
35         ans%=mod;
36     }
37     ans*=ksm(C(s+p-1-r,p-1),mod-2);
38     ans%=mod;
39     printf("%lld",ans);
40     return 0;
41 }
View Code

CF1096E The Top Scorer

标签:技术分享   def   splay   www   codeforce   close   bubuko   sed   target   

原文地址:https://www.cnblogs.com/2017SSY/p/10207411.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!