码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces 1091C New Year and the Sphere Transmission|数学

时间:2019-01-02 20:13:48      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:turn   targe   数学   mission   ...   tran   lan   tar   基础   

题目链接

题目大意:
有$n$个人坐成一个环,其中第$i$人与第$i+1$人相邻(第$1$个人与第$n$个人相邻)。

现在编号为1的人的手上有一个球,他可以选择一个数$k$($1 \le k \le n$)。表示每次传给在他后面的第$k$个人。当球重新回到编号为$1$的人时游戏结束。

定义一次游戏的$fun$值为球传到的每个人的编号之和。请从小到大输出所有可能的$fun$值。


首先,我们看$n$的范围,$n \le 10^9$,显然模拟$n$次是不行的。我们要想办法优化。

  • 优化方案 A

我们发现 ,$k=i$时与$k=n-i$时的$fun$值是相同的,所以我们可以缩成$n/2$次模拟,但对于这题来说,显然不够。

  • 优化方案 B

请自行手玩$k=2$与$K=3$时的情况

通过手玩,我们可以发现,如果$k$ $mod$ $n$不为0时,答案一定为$1+2+3+...+n$。也就是说,当$k$是$n$的约数时,才会有新答案。

所以我们可以枚举约数,当$k$是$n$的约数时,我们才进行计算。通过这个方法,模拟次数大大减少。然而,还是会TLE。

  • 优化方案 C

在B的基础上,我们再考虑从模拟下功夫优化。

我们可以发现,我们经过的点的编号是一个等差数列。利用小学学过的公式,我们就可以快速求和。至此,我们成功通过此题。

贴代码

#include<bits/stdc++.h>
using namespace std;
long long n,ys[1000000],num;
int main()
{
    cin>>n;
    for (int i=int(sqrt(n));i>0;i--)
    {
        if (!(n%i)) 
        {
            ys[++num]=i;
            ys[++num]=n/i; 
        } 
    }//预处理约数
    sort(ys+1,ys+num+1);
    for (int i=num;i>0;i--)
    {
        if (ys[i]==ys[i+1]) continue;
        bool flag=true;long long ans=0;
        ans=(1+(n+1-ys[i]))*(n/ys[i])/2;//求出答案
        cout<<ans<<" ";
    }
    return 0;
}

 

Codeforces 1091C New Year and the Sphere Transmission|数学

标签:turn   targe   数学   mission   ...   tran   lan   tar   基础   

原文地址:https://www.cnblogs.com/fmj123/p/CF1091C.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!