标签:state else int oat print pat 二维 car 部分
因为MNIST数据是28*28的黑底白字图像,而且输入时要将其拉直,也就是可以看成1*784的二维张量(张量的值在0~1之间),所以我们要对图片进行预处理操作,是图片能被网络识别。
以下是代码部分
import tensorflow as tf import numpy as np from PIL import Image import backward as bw import forward as fw def restore(testPicArr): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32, [None, fw.INPUT_NODES]) y_ = tf.placeholder(tf.float32, [None, fw.OUTPUT_NODES]) y = fw.get_y(x, None) preValue = tf.arg_max(y, 1) ema = tf.train.ExponentialMovingAverage(bw.MOVING_ARVERAGE_DECAY) ema_restore = ema.variables_to_restore() saver = tf.train.Saver(ema_restore) with tf.Session() as sess: tf.logging.set_verbosity(tf.logging.WARN)#降低警告等级 ckpt = tf.train.get_checkpoint_state("./model/") if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) preValue = sess.run(preValue, feed_dict = {x: testPicArr}) return preValue else: print("NO!!!") return -1 def pre_pic(picName): img = Image.open(picName) reIm = img.resize((28, 28), Image.ANTIALIAS) im_arr = np.array(reIm.convert(‘L‘))#变为灰度图 threshold = 50#阈值,将图片二值化操作 for i in range(28): for j in range(28): im_arr[i][j] = 255 - im_arr[i][j]#进行反色处理 if(im_arr[i][j] < threshold): im_arr[i][j] = 0 else: im_arr[i][j] = 255 nm_arr = im_arr.reshape([1,784]) nm_arr = nm_arr.astype(np.float32)#类型转换 img_ready = np.multiply(nm_arr, 1.0/255.0)#把值变为0~1之间的数值 return img_ready def app(): testNum = input("Input the number of test pictutre:") for i in range(int(testNum)): testPic = input("the path of test picture:") testPicArr = pre_pic(testPic) preValue = restore(testPicArr) print("The prediction number is :" , preValue) def main(): app() if __name__ == ‘__main__‘: main()
标签:state else int oat print pat 二维 car 部分
原文地址:https://www.cnblogs.com/1by1/p/10226900.html