码迷,mamicode.com
首页 > 其他好文 > 详细

长链剖分总结

时间:2019-01-06 14:31:58      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:...   tree   快速   处理   最坏情况   bit   $1   总结   高效   

长链剖分总结

概念

长链剖分和轻重链剖分十分相似,都是将一棵树节点的信息分成多条链的信息,但是前者是以深度剖分,后者则是以子树大小来剖分。

同时长链剖分还借鉴了$dsu\;on\;tree$的一些$trick$使得它能十分高效地合并子树信息。

性质

破天荒地写了证明

性质一

所有链长度之和为节点数

证明:

  • 每个点在且仅在一条链中

性质二

任意一个点$k$级祖先所在长链的长度一定大于等于$k$

证明:

  • 假如$y$所在长链的长度小于$k$,那么它所在的链一定不是重链,因为$x-y$这条链显然更优,那么$y$所在的重链长度至少为$k$,性质成立。否则 $y$ 所以在长链长度大于等于 $k$ ,性质成立。

性质三

任意一个点跳重链到根所用的次数不超过$\sqrt n$

证明:

  • 根据性质二,如果一个点从当前链跳到另一条链上,另一条链的长度大雨当前链的长度
  • 那么最坏情况为链长分别为$1,2,3...\sqrt n$共$\sqrt n$次

一些$trick$

一、高效计算$k$级祖先

首先对树进行长链剖分,记录每个节点所在的链的链顶,然后按深度记下每条链中的节点和这条链的长度个数个祖先,再预处理倍增数组代表$2^k$祖先。根据性质二,我们跳到节点的大于$\frac k2$次祖先,我们可以通过之前预处理出的链顶祖先中找到$k$及祖先,感性理解分析可得,第一次跳$highbit(k)$次祖先最快,复杂度$O(1)$

总复杂度$询问次数O(nlogn)+O(询问次数)$

二、快速合并以深度为下标的子树信息

Updating

长链剖分总结

标签:...   tree   快速   处理   最坏情况   bit   $1   总结   高效   

原文地址:https://www.cnblogs.com/heyujun/p/10228730.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!