码迷,mamicode.com
首页 > 其他好文 > 详细

高低阵

时间:2019-01-07 10:31:36      阅读:177      评论:0      收藏:0      [点我收藏+]

标签:amp   mit   lambda   nbsp   ilo   sch   over   分解   解方程   

矩阵秩公式:$A \in {C^{m \times n}}$

\[rank(A) = rank({A^H}) = rank(A{A^H}) = rank({A^H}A)\]

引理:$AX=0$和$A^HAX=0$有相同的解

\[\begin{array}{l}
AX = 0 \Rightarrow {A^H}AX = 0\\
{A^H}AX = 0 \Rightarrow {X^H}{A^H}AX = 0 \Rightarrow {(AX)^H}AX = {\left| {AX} \right|^2} = 0 \Rightarrow AX = 0
\end{array}\]

证明:$rank(A)=rank(A^HX)$

集合${\rm{W}} = \{ X|AX = 0\} $和$\widetilde W = \{ X|{A^H}AX = 0\} $

\[\dim W = \dim W \Rightarrow n - rank(A) = n - rank({A^H}A) \Rightarrow rank(A) = rank({A^H}A)\]

令$A=A^H$

\[rank({A^H}) = rank({({A^H})^H}{A^H}) \Rightarrow rank({A^H}) = rank(A{A^H})\]

因为$rank(A^H)=rank(A)$,所以

\[rank(A) = rank({A^H}) = rank(A{A^H}) = rank({A^H}A)\]

定理:${\rm{A}} \in {C^{m \times n}}$ A为列满秩,则A有左侧逆

证明:

$rank({A^H}A) = rank(A) = n$,所以$A^HA$满秩,所以$A^HA$存在逆阵${({A^H}A)^{ - 1}}$

\[{({A^H}A)^{ - 1}}{A^H}A = I\]

所以A的左侧逆为${({A^H}A)^{ - 1}}{A^H}$

定理:${\rm{A}} \in {C^{m \times n}}$ A为行满秩,则A有右侧逆

证明:

$rank(A{A^H}) = rank(A) = m$,所以$A^HA$满秩,所以$A^HA$存在逆阵${(A{A^H})^{ - 1}}$

\[A{A^H}{(A{A^H})^{ - 1}} = I\]

所以A的右侧逆为${A^H}{(A{A^H})^{ - 1}}$

高阵的性质:

(1)若$BCX=0$,B为高阵,则$CX=0$

\[BCX = 0 \Rightarrow {B_L}BCX = 0 \Rightarrow CX = 0\]

(2)若BX=BY,B为高阵,则$X=Y$

\[BX = BY \Rightarrow {B_L}BX = {B_L}BY \Rightarrow X = Y\]

Schur(舒尔分解):任意方阵A,${\rm{A}} \in {C^{n \times n}}$,存在酉阵Q,使得

\[{Q^H}AQ = {Q^{ - 1}}AQ = D = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}& \otimes & \otimes & \otimes \\
0&{{\lambda _2}}& \otimes & \otimes \\
0&0&{...}& \otimes \\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

Hermite阵

定义:若A为Hermite阵,则${\rm{A}} \in {C^{n \times n}}$且$A^{H}=A$

定义:若A为斜Hermite阵,则${\rm{A}} \in {C^{n \times n}}$且$A^{H}=-A$

Hermite分解定理:若${\rm{A = }}{A_{n \times n}}$为Hermite($A^H=A$),则存在酉阵Q,使得

\[\left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

并且这里的$\lambda_{1},\lambda_{2},...,\lambda_{n}$都为实数根

证明:

根据Schur定理,有酉阵Q,使得

\[{Q^H}AQ = {Q^{ - 1}}AQ = D = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}& \otimes & \otimes & \otimes \\
0&{{\lambda _2}}& \otimes & \otimes \\
0&0&{...}& \otimes \\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

然后证明$\lambda_{1},\lambda_{2},...,\lambda_{n}$都为实数

\[\left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}& \otimes & \otimes & \otimes \\
0&{{\lambda _2}}& \otimes & \otimes \\
0&0&{...}& \otimes \\
0&0&0&{{\lambda _n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\overline {{\lambda _1}} }&0&0&0\\
\otimes &{\overline {{\lambda _2}} }&0&0\\
\otimes & \otimes &{...}&0\\
\otimes & \otimes & \otimes &{\overline {{\lambda _n}} }
\end{array}} \right]\]

所以$\overline {{\lambda _k}}  = {\lambda _k}$且$\otimes  = 0$,得证

Hermite阵性质:

(1)若$A=A^{H}, X \in C^{n}$,则$f(X)=X^HAX$为实数

\[\begin{array}{l}
f{(X)^H} = {({X^H}AX)^H} = {X^H}{A^H}X = {X^H}AX = f(X)\\
f{(X)^H} = f(X) \Rightarrow \overline {f(X)} = f(X) \Rightarrow f(X) \in {R^1}
\end{array}\]

(2)若$A=A^{H}, X \in C^{n}$,则${\lambda _k} = \frac{{{X^H}AX}}{{{{\left| X \right|}^2}}}$(X为特征向量)

\[{\rm{AX}} = {\lambda _k}X \Rightarrow {X^H}AX = {\lambda _k}{X^H}X \Rightarrow {\lambda _k} = \frac{{{X^H}AX}}{{{{\left| X \right|}^2}}}\]

(3)若$A \ge 0$,则存在$B \ge 0$,使得$B^2=A$,称B为A的平方根,记为$B = \sqrt A $,可写$A = {(\sqrt A )^2}$

证明:由Hermite分解定理

\[{Q^H}AQ = D = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

\[\sqrt D = \left[ {\begin{array}{*{20}{c}}
{\sqrt {{\lambda _1}} }&0&0&0\\
0&{\sqrt {{\lambda _2}} }&0&0\\
0&0&{...}&0\\
0&0&0&{\sqrt {{\lambda _n}} }
\end{array}} \right] \ge 0\]

\[{(\sqrt D )^2} = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right] = D\]

\[{B^H} = {(Q\sqrt D {Q^H})^H} = Q{(\sqrt D )^H}{Q^H} = Q(\sqrt D ){Q^H} = B \Rightarrow B = Q(\sqrt D ){Q^H}{\rm{ = }}Q(\sqrt D ){Q^{{\rm{ - }}1}}\]

所以$B \sim \sqrt D  \Rightarrow \lambda (B) = \lambda (\sqrt D ) = \{ \sqrt {{\lambda _1}} ,\sqrt {{\lambda _2}} ,...,\sqrt {{\lambda _n}} \} $

\[{B^2} = BB = (Q\sqrt D {Q^{ - 1}})(Q\sqrt D {Q^{ - 1}}) = Q{(\sqrt D )^2}{Q^{ - 1}} = QD{Q^{ - 1}} = A\]

(4)任意$A = {A_{m \times n}}$,$A^HA,AA^H$为Hermite,且$A{A^H},{A^H}A \ge 0$

Hermite分解:

\[A = {A^H} \Rightarrow {Q^H}AQ = {Q^{ - 1}}AQ = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

$Q = \left[ {\begin{array}{*{20}{c}}
{{\varepsilon _1}}&{{\varepsilon _1}}&{...}&{{\varepsilon _n}}
\end{array}} \right]$Q为酉阵,Q中列均为特征向量(无关),即为$A{\varepsilon _1} = \lambda {\varepsilon _1},...,A{\varepsilon _n} = \lambda {\varepsilon _n}$,且${\varepsilon _1} \bot {\varepsilon _2} \bot ... \bot {\varepsilon _n}$

Hermite分解定理求解过程:

(1)$A=A^H$恰好有n个正交特征向量$x_1,x_2,...,x_n$,可求解方程$AX_i=\lambda_iX_i$找出${x_1} \bot {x_2} \bot ... \bot { x_n}$,令$P=[x_1,x_2,...,x_n]$,P为预备半酉阵,有$P_{-1}AP=D$为对角形。

\[Q = \left[ {\begin{array}{*{20}{c}}
{\frac{{{X_1}}}{{\left| {{X_1}} \right|}}}&{\frac{{{X_2}}}{{\left| {{X_2}} \right|}}}&{...}&{\frac{{{X_n}}}{{\left| {{X_n}} \right|}}}
\end{array}} \right]\]

则Q为酉阵,且$Q^{-1}AQ=Q^HAQ=D$为对角形

 

 

 

 

半正定矩阵:$A=A^H$,${\rm{A}} = {A_{n \times n}}$且$f(X) = {X^H}AX \ge 0$,则称A为半正定阵,记为"$A \ge 0$"

正定矩阵:$A=A^H$,${\rm{A}} = {A_{n \times n}}$且$f(X) = {X^H}AX > 0$,则称A为正定阵,记为"$A > 0$"

性质:

(1) $A \ge 0 \Leftrightarrow {\lambda _1} \ge 0,{\lambda _2} \ge 0,...,{\lambda _n} \ge 0,A^H=A$

(2)$A > 0 \Leftrightarrow {\lambda _1} > 0,{\lambda _2} > 0,...,{\lambda _n} > 0,A^H=A$

证明:

必要性:

\[f(X) = {X^H}AX > 0 \Rightarrow \frac{{{X^H}AX}}{{{{\left| X \right|}^2}}} = {\lambda _k} > 0\]

充分性($\lambda _k>0 A^H=A$,证任意X,有$X^HAX>0$):

因为A为Hermite矩阵,根据Hermite分解定理

\[{Q^H}AQ = D = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

\[\begin{array}{l}
{Y^H}{Q^H}AQY = {Y^H}\left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]Y = {\lambda _1}{\left| {{y_1}} \right|^2} + ... + {\lambda _n}{\left| {{y_n}} \right|^2} > 0\\
{Y^H}{Q^H}AQY > 0 \Rightarrow {(QY)^H}AQY > 0
\end{array}\]

令$X=QY$

\[{(QY)^H}AQY > 0 \Rightarrow f(X) = {X^H}AX > 0\]

斜Hermite分解定理:$A^H=-A \in C^{n \times n}$,则存在酉阵Q,使得

\[{Q^H}AQ = {Q^{ - 1}}AQ = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}i}&0&0&0\\
0&{{\lambda _2}i}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}i}
\end{array}} \right]\]

其中$\lambda (A)={\lambda_{1}i, \lambda_{2}i, ..., \lambda_{n}i }$特征根为纯虚数或0,$\lambda (\frac{A}{i}) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\} $

证明:

\[{A^H} =  - A \Rightarrow {(\frac{A}{i})^H} = \frac{{{A^H}}}{{ - 1}} = \frac{{ - A}}{{ - 1}} = A \Rightarrow \frac{A}{i} = {(\frac{A}{i})^H}\]

\[{Q^H}(\frac{A}{i})Q = {Q^{ - 1}}(\frac{A}{i})Q = D = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}}&0&0&0\\
0&{{\lambda _2}}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}}
\end{array}} \right]\]

\[{Q^H}AQ = {Q^{ - 1}}AQ = Di = = \left[ {\begin{array}{*{20}{c}}
{{\lambda _1}i}&0&0&0\\
0&{{\lambda _2}i}&0&0\\
0&0&{...}&0\\
0&0&0&{{\lambda _n}i}
\end{array}} \right]\]

 

高低阵

标签:amp   mit   lambda   nbsp   ilo   sch   over   分解   解方程   

原文地址:https://www.cnblogs.com/codeDog123/p/10205267.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!