码迷,mamicode.com
首页 > 其他好文 > 详细

TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

时间:2019-01-09 21:49:10      阅读:1202      评论:0      收藏:0      [点我收藏+]

标签:limit   app   port   welcome   using   tomat   setting   auto   api   

 

TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training.

The BestCheckpointSaver is a wrapper around a tf.train.Saver.

The BestCheckpointSaver provides the ability to save the best n checkpoints, whereas the tf.train.Saver can only save the last n checkpoints.

Features

  • Save only best n checkpoints
  • Compares checkpoints based on a user-provided value
  • Can rank checkpoints by highest or lowest values
  • Automatically delete outdated checkpoints
  • Provide at a glance record of each checkpoint‘s associated value (the user-provided value obtained from that checkpoint)

Using the BestCheckpointSaver

from checkmate import BestCheckpointSaver

# ...build model...

best_ckpt_saver = BestCheckpointSaver(
  save_dir=best_checkpoint_dir,
  num_to_keep=3,
  maximize=True
)

# train and evaluate
for train_step in range(max_steps):
  sess.run(train_op)
  if train_step % evaluation_interval == 0:
    accuracy = sess.run(eval_op, feed_dict=validation_data)
    best_ckpt_saver.handle(accuracy, sess, global_step_tensor)

Loading the best checkpoint

import checkmate

# ...build model...

saver = tf.train.Saver()
saver.restore(sess, checkmate.get_best_checkpoint(best_checkpoint_dir, maximize=True))

At this stage, the module is no-frills with limited documentation. It is not intended to work in distributed settings or with complex Session/Graph management (i.e. the tf.Estimator framework). Contributions are welcome.

 

 

 

 

 

TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

标签:limit   app   port   welcome   using   tomat   setting   auto   api   

原文地址:https://www.cnblogs.com/jins-note/p/10246750.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!