标签:std max lin ble 最小值 枚举 The 处理 ace
给定两条链\(A, B\),其中\(A\)链某些点向\(B\)链有连边,支持修改\(A\)链中的某条边权以及查询\(A_1\)到\(B_n\)的最大流
显而易见,\(A\)和\(B\)链中一定满足左部分属于\(S\)集,右部分属于\(T\)集
枚举\(A, B\)的分界点在哪里,我们就能知道哪些边需要被割掉
可以发现,对于\(A\)链上的一个点而言,割\(A,, B\)之间的边以及\(B\)边的最小值是确定的
那么,对于\(A\)链上的每个点用扫描线预处理出这个最小值
然后最后再来一个线段树来维护\(A\)链上的权值即可
复杂度\(O(n \log n)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 2e5 + 5;
int n, m, q;
int X[sid], Y[sid];
struct myk {
int a, b, v;
friend bool operator < (myk x, myk y)
{ return x.a < y.a; }
} Q[sid];
#define ls (o << 1)
#define rs (o << 1 | 1)
struct Kujuo_Miyako_Saiko {
ll mi[sid << 2], add[sid << 2];
inline void build(int o, int l, int r) {
if(l == r) { mi[o] = Y[l - 1]; return; }
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
mi[o] = min(mi[ls], mi[rs]);
}
inline void mdf(int o, int l, int r, int ml, int mr, ll v) {
if(ml > r || mr < l) return;
if(ml <= l && mr >= r) { mi[o] += v; add[o] += v; return; }
int mid = (l + r) >> 1;
mdf(ls, l, mid, ml, mr, v);
mdf(rs, mid + 1, r, ml, mr, v);
mi[o] = min(mi[ls], mi[rs]) + add[o];
}
} km;
ll V[sid];
inline void solve1() {
km.build(1, 1, n);
sort(Q + 1, Q + m + 1);
for(ri i = 1, j = 1; i <= n; i ++) {
while(Q[j].a == i && j <= m) km.mdf(1, 1, n, 1, Q[j].b, Q[j].v), j ++;
V[i] = km.mi[1];
}
}
ll mi[sid << 2];
inline void build(int o, int l, int r) {
if(l == r) { mi[o] = V[l] + X[l]; return; }
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
mi[o] = min(mi[ls], mi[rs]);
}
inline void mdf(int o, int l, int r, int p, int v) {
if(l == r) { mi[o] = V[l] + v; return; }
int mid = (l + r) >> 1;
if(p <= mid) mdf(ls, l, mid, p, v);
else mdf(rs, mid + 1, r, p, v);
mi[o] = min(mi[ls], mi[rs]);
}
inline void solve2() {
build(1, 1, n);
printf("%lld\n", mi[1]);
rep(i, 1, q) {
int v = read(), w = read();
mdf(1, 1, n, v, w); printf("%lld\n", mi[1]);
}
}
int main() {
n = read(); m = read(); q = read();
rep(i, 1, n - 1) X[i] = read(), Y[i] = read();
rep(i, 1, m) Q[i].a = read(), Q[i].b = read(), Q[i].v = read();
solve1(); solve2();
return 0;
}
CodeForces903G Yet Another Maxflow Problem 扫描线 + 线段树 + 最小割
标签:std max lin ble 最小值 枚举 The 处理 ace
原文地址:https://www.cnblogs.com/reverymoon/p/10249139.html