码迷,mamicode.com
首页 > 其他好文 > 详细

威尔逊定理及证明

时间:2019-01-12 00:25:49      阅读:490      评论:0      收藏:0      [点我收藏+]

标签:介绍   相同   bsp   mod   集合   证明   另一个   假设   内容   

给威尔逊爵士跪了!!!

1、内容

首先,介绍一下什么是威尔逊定理:

  1、p为素数。

  2、(p-1)! ≡ -1 (mod p)。

有1和2互为充要条件。

2、证明

就证明1为2的充分条件吧。

定义集合A={2,3,4,......,p-2},如果对于A中每一个元素a,均存在A中另一个元素b,使得ab ≡ 1 (mod p),且a不同时,b一定不同,则命题一定成立。

先证对于A中每一个元素a,均存在A中另一个元素b,使得ab ≡ 1 (mod p)。首先,显然1 ≤ b ≤ p-1。然后,假设b == 1,则ab = a ≠ 1,不成立;再假设b == p-1,则ab = a*(p-1) = ap-a ≡ p-a (mod p),若p-a == 1的话,须满足a == p-1,不成立。得证。

再证不同的a对应的b不相同。假设存在两个不同的a对应的b相同,再假设这两个a分别为a1,a2(a1 < a2)。则有(a2-a1)*b ≡ 0 (mod p)。而(a2-a1)、b均小于p且p为素数,故显然不成立。

威尔逊定理及证明

标签:介绍   相同   bsp   mod   集合   证明   另一个   假设   内容   

原文地址:https://www.cnblogs.com/stddddd/p/10257690.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!