码迷,mamicode.com
首页 > 其他好文 > 详细

P1501 [国家集训队]Tree II

时间:2019-01-12 17:55:01      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:nod   spl   \n   using   getchar   ons   int   ESS   maker   

\(\color{#0066ff}{ 题目描述 }\)

一棵n个点的树,每个点的初始权值为1。对于这棵树有q个操作,每个操作为以下四种操作之一:

  • + u v c:将u到v的路径上的点的权值都加上自然数c;
  • - u1 v1 u2 v2:将树中原有的边(u1,v1)删除,加入一条新边(u2,v2),保证操作完之后仍然是一棵树;
  • * u v c:将u到v的路径上的点的权值都乘上自然数c;
  • / u v:询问u到v的路径上的点的权值和,求出答案对于51061的余数。

\(\color{#0066ff}{输入格式}\)

第一行两个整数n,q

接下来n-1行每行两个正整数u,v,描述这棵树

接下来q行,每行描述一个操作

\(\color{#0066ff}{输出格式}\)

对于每个/对应的答案输出一行

\(\color{#0066ff}{输入样例}\)

3 2
1 2
2 3
* 1 3 4
/ 1 1

\(\color{#0066ff}{输出样例}\)

4

\(\color{#0066ff}{数据范围与提示}\)

10%的数据保证,\(1\leq n,q\leq 2000\)

另外15%的数据保证,\(1\leq n,q\leq 5*10^4\),没有-操作,并且初始树为一条链

另外35%的数据保证,\(1\leq n,q\leq 5*10^4\),没有-操作

100%的数据保证,\(1\leq n,q\leq 10^5,0\leq c\leq 10^4\)

\(\color{#0066ff}{ 题解 }\)

显然有link,cut的操作

所以用LCT来维护这个树

对于那些加,乘,类比线段树打标记来维护

#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL in() {
    char ch; int x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int mod = 51061;
const int maxn = 1e5 + 5;
struct LCT {
protected: 
    struct node {
        node *ch[2], *fa;
        LL val, num, add, mul, siz, rev;
        node(LL val = 1, LL num = 1, LL add = 0, LL mul = 1, LL siz = 1, int rev = 0)
            : val(val), num(num), add(add), mul(mul), siz(siz), rev(rev) { ch[0] = ch[1] = fa = NULL; }
        void g(LL a, LL m) {
            (val *= m) %= mod, (num *= m) %= mod, (add *= m) %= mod, (mul *= m) %= mod;
            (val += a) %= mod, (num += siz * a % mod) %= mod, (add += a) %= mod;
        }
        bool ntr() { return fa && (fa->ch[0] == this || fa->ch[1] == this); }
        bool isr() { return this == fa->ch[1]; }
        void trn() { std::swap(ch[0], ch[1]), rev ^= 1; }
        void dwn() {
            if(rev) {
                if(ch[0]) ch[0]->trn();
                if(ch[1]) ch[1]->trn();
                rev = 0;
            }
            if(ch[0]) ch[0]->g(add, mul);
            if(ch[1]) ch[1]->g(add, mul);
            add = 0, mul = 1;
        }
        void upd() {
            siz = 1, num = val;
            if(ch[0]) siz += ch[0]->siz, num += ch[0]->num;
            if(ch[1]) siz += ch[1]->siz, num += ch[1]->num;
        }
    }s[maxn], *t[maxn];
    int top;
    void rot(node *x) {
        node *y = x->fa, *z = y->fa;
        int k = x->isr(); node *w = x->ch[!k];
        if(y->ntr()) z->ch[y->isr()] = x;
        x->ch[!k] = y, y->ch[k] = w;
        y->fa = x, x->fa = z;
        if(w) w->fa = y;
        y->upd(), x->upd();
    }
    void splay(node *o) {
        t[top = 1] = o;
        while(t[top]->ntr()) t[top + 1] = t[top]->fa, top++;
        while(top) t[top--]->dwn();
        while(o->ntr()) {
            if(o->fa->ntr()) rot(o->isr() ^ o->fa->isr()? o : o->fa);
            rot(o);
        }
    }
    void access(node *x) {
        for(node *y = NULL; x; x = (y = x)->fa)
            splay(x), x->ch[1] = y, x->upd();
    }
    void makeroot(node *x) { access(x), splay(x), x->trn(); }
    node *findroot(node *x) {
        access(x), splay(x);
        while(x->dwn(), x->ch[0]) x = x->ch[0];
        return splay(x), x;
    }
    void link(node *x, node *y) {
        if(findroot(x) == findroot(y)) return;
        makeroot(x), x->fa = y;
    }
    void cut(node *x, node *y) {
        makeroot(x), access(y), splay(y);
        if(y->ch[0] == x) y->ch[0] = x->fa = NULL;
    }
    int query(node *x, node *y) {
        makeroot(x), access(y), splay(y);
        return y->num % mod;
    }
    void addpath(node *x, node *y, LL c) {
        makeroot(x), access(y), splay(y);
        y->g(c, 1);
    }
    void mulpath(node *x, node *y, LL c) {
        makeroot(x), access(y), splay(y);
        y->g(0, c);
    }
public:
    void link(int x, int y) { link(s + x, s + y); }
    void cut(int x, int y) { cut(s + x, s + y); }
    void add(int x, int y, LL c) { addpath(s + x, s + y, c); }
    void mul(int x, int y, LL c) { mulpath(s + x, s + y, c); }
    int query(int x, int y) { return query(s + x, s + y); }
}v;
char getch() {
    char ch = getchar();
    while(ch != '+' && ch != '-' && ch != '*' && ch != '/') ch = getchar();
    return ch;
}
int main() {
    int n = in(), q = in();
    for(int i = 1; i < n; i++) v.link(in(), in());
    int a, b, c, d;
    while(q --> 0) {
        char ch = getch();
        if(ch == '+') a = in(), b = in(), c = in(), v.add(a, b, c);
        if(ch == '-') a = in(), b = in(), c = in(), d = in(), v.cut(a, b), v.link(c, d);
        if(ch == '*') a = in(), b = in(), c = in(), v.mul(a, b, c);
        if(ch == '/') a = in(), b = in(), printf("%d\n", v.query(a, b));
    }
    return 0;
}

P1501 [国家集训队]Tree II

标签:nod   spl   \n   using   getchar   ons   int   ESS   maker   

原文地址:https://www.cnblogs.com/olinr/p/10260276.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!