标签:pandas 内容 基础 表达式 char 响应 服务端 cto 业务
以下内容转自爬虫界大佬崔庆才的文章,传送门
整个分享的主题叫做《健壮高效的网络爬虫》,本次分享从抓取、解析、存储、反爬、加速五个方面介绍了利用 Python 进行网络爬虫开发的相关知识点和技巧,介绍了不同场景下如何采取不同措施高效地进行数据抓取的方法,包括 Web 抓取、App 抓取、数据存储、代理选购、验证码破解、分布式抓取及管理、智能解析等多方面的内容,另外还结合了不同场景介绍了常用的一些工具包,全部内容是我在从事网络爬虫研究过程以来的经验精华总结。
爬取
对于爬取来说,我们需要学会使用不同的方法来应对不同情景下的数据抓取任务。
爬取的目标绝大多数情况下要么是网页,要么是 App,所以这里就分为这两个大类别来进行了介绍。
对于网页来说,我又将其划分为了两种类别,即服务端渲染和客户端渲染,对于 App 来说,我又针对接口的形式进行了四种类别的划分——普通接口、加密参数接口、加密内容接口、非常规协议接口。
所以整个大纲是这样子的:
服务端渲染的意思就是页面的结果是由服务器渲染后返回的,有效信息包含在请求的 HTML 页面里面,比如猫眼电影这个站点。客户端渲染的意思就是页面的主要内容由 JavaScript 渲染而成,真实的数据是通过 Ajax 接口等形式获取的,比如淘宝、微博手机版等等站点。
服务端渲染的情况就比较简单了,用一些基本的 HTTP 请求库就可以实现爬取,如 urllib、urllib3、pycurl、hyper、requests、grab 等框架,其中应用最多的可能就是 requests 了。
对于客户端渲染,这里我又划分了四个处理方法:
对于 App 的爬取,这里分了四个处理情况:
以上便是爬取流程的相关分类和对应的处理方法。
对于解析来说,对于 HTML 类型的页面来说,常用的解析方法其实无非那么几种,正则、XPath、CSS Selector,另外对于某些接口,常见的可能就是 JSON、XML 类型,使用对应的库进行处理即可。
这些规则和解析方法其实写起来是很繁琐的,如果我们要爬上万个网站,如果每个网站都去写对应的规则,那么不就太累了吗?所以智能解析便是一个需求。
智能解析意思就是说,如果能提供一个页面,算法可以自动来提取页面的标题、正文、日期等内容,同时把无用的信息给刨除,例如上图,这是 Safari 中自带的阅读模式自动解析的结果。
对于智能解析,下面分为四个方法进行了划分:
如果能够容忍一定的错误率,可以使用智能解析来大大节省时间。
目前这部分内容我也还在探索中,准确率有待继续提高。
存储,即选用合适的存储媒介来存储爬取到的结果,这里还是分为四种存储方式来进行介绍。
这部分的关键在于和实际业务相结合,看看选用哪种方式更可以应对业务需求。
反爬这部分是个重点,爬虫现在已经越来越难了,非常多的网站已经添加了各种反爬措施,在这里可以分为非浏览器检测、封 IP、验证码、封账号、字体反爬等。
下面主要从封 IP、验证码、封账号三个方面来阐述反爬的处理手段。
对于封 IP 的情况,可以分为几种情况来处理:
验证码分为非常多种,如普通图形验证码、算术题验证码、滑动验证码、点触验证码、手机验证码、扫二维码等。
某些网站需要登录才能爬取,但是一个账号登录之后请求过于频繁会被封号,为了避免封号,可以采取如下措施:
当爬取的数据量非常大时,如何高效快速地进行数据抓取是关键。
常见的措施有多线程、多进程、异步、分布式、细节优化等。
爬虫是网络请求密集型任务,所以使用多进程和多线程可以大大提高抓取效率,如使用 threading、multiprocessing 等。
将爬取过程改成非阻塞形式,当有响应式再进行处理,否则在等待时间内可以运行其他任务,如使用 asyncio、aiohttp、Tornado、Twisted、gevent、grequests、pyppeteer、pyspider、Scrapy 等。
分布式的关键在于共享爬取队列,可以使用 celery、huey、rq、rabbitmq、kafka 等来实现任务队列的对接,也可以使用现成的框架 pyspider、Scrapy-Redis、Scrapy-Cluster 等。
可以采取某些优化措施来实现爬取的加速,如:
如果搭建了分布式,要实现高效的爬取和管理调度、监控等操作,我们可以使用两种架构来维护我们的爬虫项目。
以上便是我分享的全部内容,所有的内容几乎都展开说了,一共讲了一个半小时。
上面的文字版的总结可能比较简略,非常建议大家如有时间的话观看原版视频分享,里面还能看到我本人的真面目哦,现在已经上传到了 Bilibili,链接为:https://www.bilibili.com/video/av34379204,大家也可以通过点击原文或扫码来查看视频。
另外对于这部分内容,其实还有我制作的更丰富的思维导图,预览图如下:
标签:pandas 内容 基础 表达式 char 响应 服务端 cto 业务
原文地址:https://www.cnblogs.com/yangva/p/10261337.html