标签:recent promise step param import specific schema call instance
This blog is copied from: https://github.com/borisbanushev/stockpredictionai
In this notebook I will create a complete process for predicting stock price movements. Follow along and we will achieve some pretty good results. For that purpose we will use a Generative Adversarial Network (GAN) with LSTM, a type of Recurrent Neural Network, as generator, and a Convolutional Neural Network, CNN, as a discriminator. We use LSTM for the obvious reason that we are trying to predict time series data. Why we use GAN and specifically CNN as a discriminator? That is a good question: there are special sections on that later.
We will go into greater details for each step, of course, but the most difficult part is the GAN: very tricky part of successfully training a GAN is getting the right set of hyperparameters. For that reason we will use Bayesian optimisation(along with Gaussian processes) and Reinforcement learning (RL) for deciding when and how to change the GAN‘s hyperparameters (the exploration vs. exploitation dilemma). In creating the reinforcement learning we will use the most recent advancements in the field, such as Rainbow and PPO.
We will use a lot of different types of input data. Along with the stock‘s historical trading data and technical indicators, we will use the newest advancements in NLP (using ‘Bidirectional Embedding Representations from Transformers‘, BERT, sort of a transfer learning for NLP) to create sentiment analysis (as a source for fundamental analysis), Fourier transforms for extracting overall trend directions, Stacked autoencoders for identifying other high-level features, Eigen portfolios for finding correlated assets, autoregressive integrated moving average (ARIMA) for the stock function approximation, and many more, in order to capture as much information, patterns, dependencies, etc, as possible about the stock. As we all know, the more (data) the merrier. Predicting stock price movements is an extremely complex task, so the more we know about the stock (from different perspectives) the higher our changes are.
For the purpose of creating all neural nets we will use MXNet and its high-level API - Gluon, and train them on multiple GPUs.
Note: Although I try to get into details of the math and the mechanisms behind almost all algorithms and techniques, this notebook is not explicitly intended to explain how machine/deep learning, or the stock markets, work. The purpose is rather to show how we can use different techniques and algorithms for the purpose of accurately predicting stock price movements, and to also give rationale behind the reason and usefulness of using each technique at each step.
Notebook created: January 9, 2019.
Figure 1 - The overall architecture of our work
Accurately predicting the stock markets is a complex task as there are millions of events and pre-conditions for a particilar stock to move in a particular direction. So we need to be able to capture as many of these pre-conditions as possible. We also need make several important assumptions: 1) markets are not 100% random, 2) history repeats, 3) markets follow people‘s rational behavior, and 4) the markets are ‘perfect‘. And, please, do read the Disclaimer at the bottom.
We will try to predict the price movements of Goldman Sachs (NYSE: GS). For the purpose, we will use daily closing price from January 1st, 2010 to December 31st, 2018 (seven years for training purposes and two years for validation purposes). We will use the terms ‘Goldman Sachs‘ and ‘GS‘ interchangeably.
Before we continue, I‘d like to thank my friends Nuwan and Thomas without whose ideas and support I wouldn‘t have been able to create this work.
We need to understand what affects whether GS‘s stock price will move up or down. It is what people as a whole think. Hence, we need to incorporate as much information (depicting the stock from different aspects and angles) as possible. (We will use daily data - 1,585 days to train the various algorithms (70% of the data we have) and predict the next 680 days (test data). Then we will compare the predicted results with a test (hold-out) data. Each type of data (we will refer to it as feature) is explained in greater detail in later sections, but, as a high level overview, the features we will use are:
Next, having so many features, we need to perform a couple of important steps:
As a final step of our data preparation, we will also create Eigen portfolios using Principal Component Analysis (PCA) in order to reduce the dimensionality of the features created from the autoencoders.
from utils import *
import time
import numpy as np
from mxnet import nd, autograd, gluon
from mxnet.gluon import nn, rnn
import mxnet as mx
import datetime
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.decomposition import PCA
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings("ignore")
context = mx.cpu(); model_ctx=mx.cpu()
mx.random.seed(1719)
Note: The purpose of this section (3. The Data) is to show the data preprocessing and to give rationale for using different sources of data, hence I will only use a subset of the full data (that is used for training).
def parser(x):
return datetime.datetime.strptime(x,‘%Y-%m-%d‘)
dataset_ex_df = pd.read_csv(‘data/panel_data_close.csv‘, header=0, parse_dates=[0], date_parser=parser)
dataset_ex_df[[‘Date‘, ‘GS‘]].head(3)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
Date | GS | |
---|---|---|
0 | 2009-12-31 | 168.839996 |
1 | 2010-01-04 | 173.080002 |
2 | 2010-01-05 | 176.139999 |
print(‘There are {} number of days in the dataset.‘.format(dataset_ex_df.shape[0]))
There are 2265 number of days in the dataset.
Let‘s visualize the stock for the last nine years. The dashed vertical line represents the separation between training and test data.
plt.figure(figsize=(14, 5), dpi=100)
plt.plot(dataset_ex_df[‘Date‘], dataset_ex_df[‘GS‘], label=‘Goldman Sachs stock‘)
plt.vlines(datetime.date(2016,4, 20), 0, 270, linestyles=‘--‘, colors=‘gray‘, label=‘Train/Test data cut-off‘)
plt.xlabel(‘Date‘)
plt.ylabel(‘USD‘)
plt.title(‘Figure 2: Goldman Sachs stock price‘)
plt.legend()
plt.show()
num_training_days = int(dataset_ex_df.shape[0]*.7)
print(‘Number of training days: {}. Number of test days: {}.‘.format(num_training_days, dataset_ex_df.shape[0]-num_training_days))
Number of training days: 1585. Number of test days: 680.
As explained earlier we will use other assets as features, not only GS.
So what other assets would affect GS‘s stock movements? Good understanding of the company, its lines of businesses, competitive landscape, dependencies, suppliers and client type, etc is very important for picking the right set of correlated assets:
We already covered what are technical indicators and why we use them so let‘s jump straight to the code. We will create technical indicators only for GS.
def get_technical_indicators(dataset):
# Create 7 and 21 days Moving Average
dataset[‘ma7‘] = dataset[‘price‘].rolling(window=7).mean()
dataset[‘ma21‘] = dataset[‘price‘].rolling(window=21).mean()
# Create MACD
dataset[‘26ema‘] = pd.ewma(dataset[‘price‘], span=26)
dataset[‘12ema‘] = pd.ewma(dataset[‘price‘], span=12)
dataset[‘MACD‘] = (dataset[‘12ema‘]-dataset[‘26ema‘])
# Create Bollinger Bands
dataset[‘20sd‘] = pd.stats.moments.rolling_std(dataset[‘price‘],20)
dataset[‘upper_band‘] = dataset[‘ma21‘] + (dataset[‘20sd‘]*2)
dataset[‘lower_band‘] = dataset[‘ma21‘] - (dataset[‘20sd‘]*2)
# Create Exponential moving average
dataset[‘ema‘] = dataset[‘price‘].ewm(com=0.5).mean()
# Create Momentum
dataset[‘momentum‘] = dataset[‘price‘]-1
return dataset
dataset_TI_df = get_technical_indicators(dataset_ex_df[[‘GS‘]])
dataset_TI_df.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
Date | price | ma7 | ma21 | 26ema | 12ema | MACD | 20sd | upper_band | lower_band | ema | momentum | log_momentum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2010-02-01 | 153.130005 | 152.374285 | 164.220476 | 160.321839 | 156.655072 | -3.666767 | 9.607375 | 183.435226 | 145.005726 | 152.113609 | 152.130005 | 5.024735 |
1 | 2010-02-02 | 156.940002 | 152.777143 | 163.653809 | 160.014868 | 156.700048 | -3.314821 | 9.480630 | 182.615070 | 144.692549 | 155.331205 | 155.940002 | 5.049471 |
2 | 2010-02-03 | 157.229996 | 153.098572 | 162.899047 | 159.766235 | 156.783365 | -2.982871 | 9.053702 | 181.006450 | 144.791644 | 156.597065 | 156.229996 | 5.051329 |
3 | 2010-02-04 | 150.679993 | 153.069999 | 161.686666 | 158.967168 | 155.827031 | -3.140137 | 8.940246 | 179.567157 | 143.806174 | 152.652350 | 149.679993 | 5.008500 |
4 | 2010-02-05 | 154.160004 | 153.449999 | 160.729523 | 158.550196 | 155.566566 | -2.983631 | 8.151912 | 177.033348 | 144.425699 | 153.657453 | 153.160004 | 5.031483 |
So we have the technical indicators (including MACD, Bollinger bands, etc) for every trading day. We have in total 12 technical indicators.
Let‘s visualize the last 400 days of these indicators.
def plot_technical_indicators(dataset, last_days):
plt.figure(figsize=(16, 10), dpi=100)
shape_0 = dataset.shape[0]
xmacd_ = shape_0-last_days
dataset = dataset.iloc[-last_days:, :]
x_ = range(3, dataset.shape[0])
x_ =list(dataset.index)
# Plot first subplot
plt.subplot(2, 1, 1)
plt.plot(dataset[‘ma7‘],label=‘MA 7‘, color=‘g‘,linestyle=‘--‘)
plt.plot(dataset[‘price‘],label=‘Closing Price‘, color=‘b‘)
plt.plot(dataset[‘ma21‘],label=‘MA 21‘, color=‘r‘,linestyle=‘--‘)
plt.plot(dataset[‘upper_band‘],label=‘Upper Band‘, color=‘c‘)
plt.plot(dataset[‘lower_band‘],label=‘Lower Band‘, color=‘c‘)
plt.fill_between(x_, dataset[‘lower_band‘], dataset[‘upper_band‘], alpha=0.35)
plt.title(‘Technical indicators for Goldman Sachs - last {} days.‘.format(last_days))
plt.ylabel(‘USD‘)
plt.legend()
# Plot second subplot
plt.subplot(2, 1, 2)
plt.title(‘MACD‘)
plt.plot(dataset[‘MACD‘],label=‘MACD‘, linestyle=‘-.‘)
plt.hlines(15, xmacd_, shape_0, colors=‘g‘, linestyles=‘--‘)
plt.hlines(-15, xmacd_, shape_0, colors=‘g‘, linestyles=‘--‘)
plt.plot(dataset[‘log_momentum‘],label=‘Momentum‘, color=‘b‘,linestyle=‘-‘)
plt.legend()
plt.show()
plot_technical_indicators(dataset_TI_df, 400)
For fundamental analysis we will perform sentiment analysis on all daily news about GS. Using sigmoid at the end, result will be between 0 and 1. The closer the score is to 0 - the more negative the news is (closer to 1 indicates positive sentiment). For each day, we will create the average daily score (as a number between 0 and 1) and add it as a feature.
For the purpose of classifying news as positive or negative (or neutral) we will use BERT, which is a pre-trained language representation.
Pretrained BERT models are already available in MXNet/Gluon. We just need to instantiated them and add two (arbitrary number) Dense
layers, going to softmax - the score is from 0 to 1.
# just import bert
import bert
Going into the details of BERT and the NLP part is not in the scope of this notebook, but you have interest, do let me know - I will create a new repo only for BERT as it definitely is quite promissing when it comes to language processing tasks.
Fourier transforms take a function and create a series of sine waves (with different amplitudes and frames). When combined, these sine waves approximate the original function. Mathematically speaking, the transforms look like this:
$$G(f) = \int_{-\infty}^\infty g(t) e^{-i 2 \pi f t} dt$$
We will use Fourier transforms to extract global and local trends in the GS stock, and to also denoise it a little. So let‘s see how it works.
data_FT = dataset_ex_df[[‘Date‘, ‘GS‘]]
close_fft = np.fft.fft(np.asarray(data_FT[‘GS‘].tolist()))
fft_df = pd.DataFrame({‘fft‘:close_fft})
fft_df[‘absolute‘] = fft_df[‘fft‘].apply(lambda x: np.abs(x))
fft_df[‘angle‘] = fft_df[‘fft‘].apply(lambda x: np.angle(x))
plt.figure(figsize=(14, 7), dpi=100)
fft_list = np.asarray(fft_df[‘fft‘].tolist())
for num_ in [3, 6, 9, 100]:
fft_list_m10= np.copy(fft_list); fft_list_m10[num_:-num_]=0
plt.plot(np.fft.ifft(fft_list_m10), label=‘Fourier transform with {} components‘.format(num_))
plt.plot(data_FT[‘GS‘], label=‘Real‘)
plt.xlabel(‘Days‘)
plt.ylabel(‘USD‘)
plt.title(‘Figure 3: Goldman Sachs (close) stock prices & Fourier transforms‘)
plt.legend()
plt.show()
As you see in Figure 3 the more components from the Fourier transform we use the closer the approximation function is to the real stock price (the 100 components transform is almost identical to the original function - the red and the purple lines almost overlap). We use Fourier transforms for the purpose of extracting long- and short-term trends so we will use the transforms with 3, 6, and 9 components. You can infer that the transform with 3 components serves as the long term trend.
Another technique used to denoise data is call wavelets. Wavelets and Fourier transform gave similar results so we will only use Fourier transforms.
from collections import deque
items = deque(np.asarray(fft_df[‘absolute‘].tolist()))
items.rotate(int(np.floor(len(fft_df)/2)))
plt.figure(figsize=(10, 7), dpi=80)
plt.stem(items)
plt.title(‘Figure 4: Components of Fourier transforms‘)
plt.show()
ARIMA is a technique for predicting time series data. We will show how to use it, and althouth ARIMA will not serve as our final prediction, we will use it as a technique to denoise the stock a little and to (possibly) extract some new patters or features.
from statsmodels.tsa.arima_model import ARIMA
from pandas import DataFrame
from pandas import datetime
series = data_FT[‘GS‘]
model = ARIMA(series, order=(5, 1, 0))
model_fit = model.fit(disp=0)
print(model_fit.summary())
ARIMA Model Results
==============================================================================
Dep. Variable: D.GS No. Observations: 2264
Model: ARIMA(5, 1, 0) Log Likelihood -5465.888
Method: css-mle S.D. of innovations 2.706
Date: Wed, 09 Jan 2019 AIC 10945.777
Time: 10:28:07 BIC 10985.851
Sample: 1 HQIC 10960.399
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -0.0011 0.054 -0.020 0.984 -0.106 0.104
ar.L1.D.GS -0.0205 0.021 -0.974 0.330 -0.062 0.021
ar.L2.D.GS 0.0140 0.021 0.665 0.506 -0.027 0.055
ar.L3.D.GS -0.0030 0.021 -0.141 0.888 -0.044 0.038
ar.L4.D.GS 0.0026 0.021 0.122 0.903 -0.039 0.044
ar.L5.D.GS -0.0522 0.021 -2.479 0.013 -0.093 -0.011
Roots
=============================================================================
Real Imaginary Modulus Frequency
-----------------------------------------------------------------------------
AR.1 -1.7595 -0.0000j 1.7595 -0.5000
AR.2 -0.5700 -1.7248j 1.8165 -0.3008
AR.3 -0.5700 +1.7248j 1.8165 0.3008
AR.4 1.4743 -1.0616j 1.8168 -0.0993
AR.5 1.4743 +1.0616j 1.8168 0.0993
-----------------------------------------------------------------------------
from pandas.tools.plotting import autocorrelation_plot
autocorrelation_plot(series)
plt.figure(figsize=(10, 7), dpi=80)
plt.show()
<Figure size 800x560 with 0 Axes>
from pandas import read_csv
from pandas import datetime
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
X = series.values
size = int(len(X) * 0.66)
train, test = X[0:size], X[size:len(X)]
history = [x for x in train]
predictions = list()
for t in range(len(test)):
model = ARIMA(history, order=(5,1,0))
model_fit = model.fit(disp=0)
output = model_fit.forecast()
yhat = output[0]
predictions.append(yhat)
obs = test[t]
history.append(obs)
error = mean_squared_error(test, predictions)
print(‘Test MSE: %.3f‘ % error)
Test MSE: 10.151
# Plot the predicted (from ARIMA) and real prices
plt.figure(figsize=(12, 6), dpi=100)
plt.plot(test, label=‘Real‘)
plt.plot(predictions, color=‘red‘, label=‘Predicted‘)
plt.xlabel(‘Days‘)
plt.ylabel(‘USD‘)
plt.title(‘Figure 5: ARIMA model on GS stock‘)
plt.legend()
plt.show()
As we can see from Figure 5 ARIMA gives a very good approximation of the real stock price. We will use the predicted price through ARIMA as an input feature into the LSTM because, as we mentioned before, we want to capture as many features and patterns about Goldman Sachs as possible. We go test MSE (mean squared error) of 10.151, which by itself is not a bad result (considering we do have a lot of test data), but still we will only use it as a feature in the LSTM.
Ensuring that the data has good quality is very important for out models. In order to make sure our data is suitable we will perform a couple of simple checks in order to ensure that the results we achieve and observe are indeed real, rather than compromised due to the fact that the underlying data distribution suffers from fundamental errors.
We will not go into the code here as it is straightforward and our focus is more on the deep learning parts, but the data is qualitative.
print(‘Total dataset has {} samples, and {} features.‘.format(dataset_total_df.shape[0], dataset_total_df.shape[1]))
Total dataset has 2265 samples, and 112 features.
So, after adding all types of data (the correlated assets, technical indicators, fundamental analysis, Fourier, and Arima) we have a total of 112 features for the 2,265 days (as mentioned before, however, only 1,585 days are for training data).
We will also have some more features generated from the autoencoders.
Having so many features we have to consider whether all of them are really indicative of the direction GS stock will take. For example, we included USD denominated LIBOR rates in the dataset because we think that changes in LIBOR might indicate changes in the economy, that, in turn, might indicate changes in the GS‘s stock behavior. But we need to test. There are many ways to test feature importance, but the one we will apply uses XGBoost, because it gives one of the best results in both classification and regression problems.
Since the features dataset is quite large, for the purpose of presentation here we‘ll use only the technical indicators. During the real features importance testing all selected features proved somewhat important so we won‘t exclude anything when training the GAN.
def get_feature_importance_data(data_income):
data = data_income.copy()
y = data[‘price‘]
X = data.iloc[:, 1:]
train_samples = int(X.shape[0] * 0.65)
X_train = X.iloc[:train_samples]
X_test = X.iloc[train_samples:]
y_train = y.iloc[:train_samples]
y_test = y.iloc[train_samples:]
return (X_train, y_train), (X_test, y_test)
# Get training and test data
(X_train_FI, y_train_FI), (X_test_FI, y_test_FI) = get_feature_importance_data(dataset_TI_df)
regressor = xgb.XGBRegressor(gamma=0.0,n_estimators=150,base_score=0.7,colsample_bytree=1,learning_rate=0.05)
xgbModel = regressor.fit(X_train_FI,y_train_FI, eval_set = [(X_train_FI, y_train_FI), (X_test_FI, y_test_FI)], verbose=False)
eval_result = regressor.evals_result()
training_rounds = range(len(eval_result[‘validation_0‘][‘rmse‘]))
Let‘s plot the training and validation errors in order to observe the training and check for overfitting (there isn‘t overfitting).
plt.scatter(x=training_rounds,y=eval_result[‘validation_0‘][‘rmse‘],label=‘Training Error‘)
plt.scatter(x=training_rounds,y=eval_result[‘validation_1‘][‘rmse‘],label=‘Validation Error‘)
plt.xlabel(‘Iterations‘)
plt.ylabel(‘RMSE‘)
plt.title(‘Training Vs Validation Error‘)
plt.legend()
plt.show()
fig = plt.figure(figsize=(8,8))
plt.xticks(rotation=‘vertical‘)
plt.bar([i for i in range(len(xgbModel.feature_importances_))], xgbModel.feature_importances_.tolist(), tick_label=X_test_FI.columns)
plt.title(‘Figure 6: Feature importance of the technical indicators.‘)
plt.show()
Not surprisingly (for those with experience in stock trading) that MA7, MACD, and BB are among the important features.
I followed the same logic for performing feature importance over the whole dataset - just the training took longer and results were a little more difficult to read, as compared with just a handful of features.
Before we proceed to the autoencoders, we‘ll explore an alternative activation function.
GELU - Gaussian Error Linear Unites was recently proposed - link. In the paper the authors show several instances in which neural networks using GELU outperform networks using ReLU as an activation. gelu
is also used in BERT, the NLP approach we used for news sentiment analysis.
We will use GELU for the autoencoders.
Note: The cell below shows the logic behind the math of GELU. It is not the actual implementation as an activation function. I had to implement GELU inside MXNet. If you follow the code and change act_type=‘relu‘
to act_type=‘gelu‘
it will not work, unless you change the implementation of MXNet. Make a pull request on the whole project to access the MXNet implementation of GELU.
def gelu(x):
return 0.5 * x * (1 + math.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * math.pow(x, 3))))
def relu(x):
return max(x, 0)
def lrelu(x):
return max(0.01*x, x)
Let‘s visualize GELU
, ReLU
, and LeakyReLU
(the last one is mainly used in GANs - we also use it).
plt.figure(figsize=(15, 5))
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=None)
ranges_ = (-10, 3, .25)
plt.subplot(1, 2, 1)
plt.plot([i for i in np.arange(*ranges_)], [relu(i) for i in np.arange(*ranges_)], label=‘ReLU‘, marker=‘.‘)
plt.plot([i for i in np.arange(*ranges_)], [gelu(i) for i in np.arange(*ranges_)], label=‘GELU‘)
plt.hlines(0, -10, 3, colors=‘gray‘, linestyles=‘--‘, label=‘0‘)
plt.title(‘Figure 7: GELU as an activation function for autoencoders‘)
plt.ylabel(‘f(x) for GELU and ReLU‘)
plt.xlabel(‘x‘)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot([i for i in np.arange(*ranges_)], [lrelu(i) for i in np.arange(*ranges_)], label=‘Leaky ReLU‘)
plt.hlines(0, -10, 3, colors=‘gray‘, linestyles=‘--‘, label=‘0‘)
plt.ylabel(‘f(x) for Leaky ReLU‘)
plt.xlabel(‘x‘)
plt.title(‘Figure 8: LeakyReLU‘)
plt.legend()
plt.show()
Note: In future versions of this notebook I will experiment using U-Net (link), and try to utilize the convolutional layer and extract (and create) even more features about the stock‘s underlying movement patterns. For now, we will just use a simple autoencoder made only from Dense
layers.
Ok, back to the autoencoders, depicted below (the image is only schematic, it doesn‘t represent the real number of layers, units, etc.)
Note: One thing that I will explore in a later version is removing the last layer in the decoder. Normally, in autoencoders the number of encoders == number of decoders. We want, however, to extract higher level features (rather than creating the same input), so we can skip the last layer in the decoder. We achieve this creating the encoder and decoder with same number of layers during the training, but when we create the output we use the layer next to the only one as it would contain the higher level features.
batch_size = 64
n_batches = VAE_data.shape[0]/batch_size
VAE_data = VAE_data.values
train_iter = mx.io.NDArrayIter(data={‘data‘: VAE_data[:num_training_days,:-1]}, label={‘label‘: VAE_data[:num_training_days, -1]}, batch_size = batch_size)
test_iter = mx.io.NDArrayIter(data={‘data‘: VAE_data[num_training_days:,:-1]}, label={‘label‘: VAE_data[num_training_days:,-1]}, batch_size = batch_size)
model_ctx = mx.cpu()
class VAE(gluon.HybridBlock):
def __init__(self, n_hidden=400, n_latent=2, n_layers=1, n_output=784, batch_size=100, act_type=‘relu‘, **kwargs):
self.soft_zero = 1e-10
self.n_latent = n_latent
self.batch_size = batch_size
self.output = None
self.mu = None
super(VAE, self).__init__(**kwargs)
with self.name_scope():
self.encoder = nn.HybridSequential(prefix=‘encoder‘)
for i in range(n_layers):
self.encoder.add(nn.Dense(n_hidden, activation=act_type))
self.encoder.add(nn.Dense(n_latent*2, activation=None))
self.decoder = nn.HybridSequential(prefix=‘decoder‘)
for i in range(n_layers):
self.decoder.add(nn.Dense(n_hidden, activation=act_type))
self.decoder.add(nn.Dense(n_output, activation=‘sigmoid‘))
def hybrid_forward(self, F, x):
h = self.encoder(x)
#print(h)
mu_lv = F.split(h, axis=1, num_outputs=2)
mu = mu_lv[0]
lv = mu_lv[1]
self.mu = mu
eps = F.random_normal(loc=0, scale=1, shape=(self.batch_size, self.n_latent), ctx=model_ctx)
z = mu + F.exp(0.5*lv)*eps
y = self.decoder(z)
self.output = y
KL = 0.5*F.sum(1+lv-mu*mu-F.exp(lv),axis=1)
logloss = F.sum(x*F.log(y+self.soft_zero)+ (1-x)*F.log(1-y+self.soft_zero), axis=1)
loss = -logloss-KL
return loss
n_hidden=400 # neurons in each layer
n_latent=2
n_layers=3 # num of dense layers in encoder and decoder respectively
n_output=VAE_data.shape[1]-1
net = VAE(n_hidden=n_hidden, n_latent=n_latent, n_layers=n_layers, n_output=n_output, batch_size=batch_size, act_type=‘gelu‘)
net.collect_params().initialize(mx.init.Xavier(), ctx=mx.cpu())
net.hybridize()
trainer = gluon.Trainer(net.collect_params(), ‘adam‘, {‘learning_rate‘: .01})
print(net)
VAE(
(encoder): HybridSequential(
(0): Dense(None -> 400, Activation(relu))
(1): Dense(None -> 400, Activation(relu))
(2): Dense(None -> 400, Activation(relu))
(3): Dense(None -> 4, linear)
)
(decoder): HybridSequential(
(0): Dense(None -> 400, Activation(relu))
(1): Dense(None -> 400, Activation(relu))
(2): Dense(None -> 400, Activation(relu))
(3): Dense(None -> 11, Activation(sigmoid))
)
)
So we have 3 layers (with 400 neurons in each) in both the encoder and the decoder.
n_epoch = 150
print_period = n_epoch // 10
start = time.time()
training_loss = []
validation_loss = []
for epoch in range(n_epoch):
epoch_loss = 0
epoch_val_loss = 0
train_iter.reset()
test_iter.reset()
n_batch_train = 0
for batch in train_iter:
n_batch_train +=1
data = batch.data[0].as_in_context(mx.cpu())
with autograd.record():
loss = net(data)
loss.backward()
trainer.step(data.shape[0])
epoch_loss += nd.mean(loss).asscalar()
n_batch_val = 0
for batch in test_iter:
n_batch_val +=1
data = batch.data[0].as_in_context(mx.cpu())
loss = net(data)
epoch_val_loss += nd.mean(loss).asscalar()
epoch_loss /= n_batch_train
epoch_val_loss /= n_batch_val
training_loss.append(epoch_loss)
validation_loss.append(epoch_val_loss)
"""if epoch % max(print_period, 1) == 0:
print(‘Epoch {}, Training loss {:.2f}, Validation loss {:.2f}‘. format(epoch, epoch_loss, epoch_val_loss))"""
end = time.time()
print(‘Training completed in {} seconds.‘.format(int(end-start)))
Training completed in 62 seconds.
dataset_total_df[‘Date‘] = dataset_ex_df[‘Date‘]
vae_added_df = mx.nd.array(dataset_total_df.iloc[:, :-1].values)
print(‘The shape of the newly created (from the autoencoder) features is {}.‘.format(vae_added_df.shape))
The shape of the newly created (from the autoencoder) features is (2265, 112).
We created 112 more features from the autoencoder. As we want to only have high level features (overall patterns) we will create an Eigen portfolio on the newly created 112 features using Principal Component Analysis (PCA). This will reduce the dimension (number of columns) of the data. The descriptive capability of the Eigen portfolio will be the same as the original 112 features.
Note Once again, this is purely experimental. I am not 100% sure the described logic will hold. As everything else in AI and deep learning, this is art and needs experiments.
# We want the PCA to create the new components to explain 80% of the variance
pca = PCA(n_components=.8)
x_pca = StandardScaler().fit_transform(vae_added_df)
principalComponents = pca.fit_transform(x_pca)
principalComponents.n_components_
84
So, in order to explain 80% of the variance we need 84 (out of the 112) features. This is still a lot. So, for now we will not include the autoencoder created features. I will work on creating the autoencoder architecture in which we get the output from an intermediate layer (not the last one) and connect it to another Dense
layer with, say, 30 neurons. Thus, we will 1) only extract higher level features, and 2) come up with significantly fewer number of columns.
-- To be added soon.
Figure 9: Simple GAN architecture
As mentioned before, the purpose of this notebook is not to explain in detail the math behind deep learning but to show its applications. Of course, thorough and very solid understanding from the fundamentals down to the smallest details, in my opinion, is extremely imperative. Hence, we will try to balance and give a high-level overview of how GANs work in order for the reader to fully understand the rationale behind using GANs in predicting stock price movements. Feel free to skip this and the next section if you are experienced with GANs (and do check section 4.2.).
A GAN network consists of two models - a Generator ($G$) and Discriminator ($D$). The steps in training a GAN are:
When combined together, $D$ and $G$ as sort of playing a minmax game (the Generator is trying to fool the Discriminator making it increase the probability for on fake examples, i.e. minimize $\mathbb{E}{z \sim p{z}(z)} [\log (1 - D(G(z)))]$. The Discriminator wants to separate the data coming from the Generator, $D(G(z))$, by maximizing $\mathbb{E}{x \sim p{r}(x)} [\log D(x)]$). Having separated loss functions, however, it is not clear how both can converge together (that is why we use some advancements over the plain GANs, such as Wasserstein GAN). Overall, the combined loss function looks like:
$$L(D, G) = \mathbb{E}{x \sim p{r}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$$
Note: Really useful tips for training GANs can be found here.
Note: I will not include the complete code behind the GAN and the Reinforcement learning parts in this notebook - only the results from the execution (the cell outputs) will be shown. Make a pull request or contact me for the code.
Generative Adversarial Networks (GAN) have been recently used mainly in creating realistic images, paintings, and video clips. There aren‘t many applications of GANs being used for predicting time-series data as in our case. The main idea, however, should be same - we want to predict future stock movements. In the future, the pattern and behavior of GS‘s stock should be more or less the same (unless it starts operating in a totally different way, or the economy drastically changes). Hence, we want to ‘generate‘ data for the future that will have similar (not absolutely the same, of course) distribution as the one we already have - the historical trading data. So, in theory, it should work.
In our case, we will use LSTM as a time-series generator, and CNN as a discriminator.
Note: The next couple of sections assume some experience with GANs.
A recent improvement over the traditional GANs came out from Uber‘s engineering team and is called Metropolis-Hastings GAN (MHGAN). The idea behind Uber‘s approach is (as they state it) somewhat similar to another approach created by Google and University of California, Berkeley called Discriminator Rejection Sampling (DRS). Basically, when we train GAN we use the Discriminator ($D$) for the sole purpose of better training the Generator ($G$). Often, after training the GAN we do not use the $D$ any more. MHGAN and DRS, however, try to use $D$ in order to choose samples generated by $G$ that are close to the real data distribution (slight difference between is that MHGAN uses Markov Chain Monte Carlo (MCMC) for sampling).
MHGAN takes K samples generated from the $G$ (created from independent noise inputs to the $G$ - $z_0$ to $z_K$ in the figure below). Then it sequentially runs through the K outputs ($x‘_0$ to $x‘_K$) and following an acceptance rule (created from the Discriminator) decides whether to accept the current sample or keep the last accepted one. The last kept output is the one considered the real output of $G$.
Note: MHGAN is originally implemented by Uber in pytorch. I only transferred it into MXNet/Gluon.
Figure 10: Visual representation of MHGAN (from the original Uber post).
Training GANs is quite difficult. Models may never converge and mode collapse can easily happen. We will use a modification of GAN called Wasserstein GAN - WGAN.
Again, we will not go into details, but the most notable points to make are:
As mentioned before, the generator is a LSTM network a type of Recurrent Neural Network (RNN). RNNs are used for time-series data because because they keep track of all previous data points and can capture patterns developing through time. Due to their nature, RNNs many time suffer from vanishing gradient - that is, the changes the weights receive during training become so small, that they don‘t change, making the network unable to converge to a minimal loss (The opposite problem can also be observed at times - when gradients become too big. This is called gradient exploding, but the solution to this is quite simple - clip gradients if they start exceeding some constant number, i.e. gradient clipping). Two modifications tackle this problem - Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM). The biggest differences between the two are: 1) GRU has 2 gates (update and reset) and LSTM has 4 (update, input, forget, and output), 2) LSTM maintains an internal memory state, while GRU doesn’t, and 3) LSTM applies a nonlinearity (sigmoid) before the output gate, GRU doesn’t.
In most cases LSTM and GRU give similar results in terms of accuracy but GRU is much less computational intensive, as GRU has much fewer trainable params. LSTMs, however, and much more used.
Strictly speaking, the math behind the LSTM cell (the gates) is:
$$g_t = \text{tanh}(X_t W_{xg} + h_{t-1} W_{hg} + b_g),$$
$$i_t = \sigma(X_t W_{xi} + h_{t-1} W_{hi} + b_i),$$
$$f_t = \sigma(X_t W_{xf} + h_{t-1} W_{hf} + b_f),$$
$$o_t = \sigma(X_t W_{xo} + h_{t-1} W_{ho} + b_o),$$
$$c_t = f_t \odot c_{t-1} + i_t \odot g_t,$$
$$h_t = o_t \odot \text{tanh}(c_t),$$
where $\odot$ is an element-wise multiplication operator, and, for all $x = [x_1, x_2, \ldots, x_k]^\top \in R^k$ the two activation functions:,
$$\sigma(x) = \left[\frac{1}{1+\exp(-x_1)}, \ldots, \frac{1}{1+\exp(-x_k)}]\right]^\top,$$
$$\text{tanh}(x) = \left[\frac{1-\exp(-2x_1)}{1+\exp(-2x_1)}, \ldots, \frac{1-\exp(-2x_k)}{1+\exp(-2x_k)}\right]^\top$$
The LSTM architecture is very simple - one LSTM
layer with 112 input units (as we have 112 features in the dataset) and 500 hidden units, and one Dense
layer with 1 output - the price for every day. The initializer is Xavier and we will use L1 loss (which is mean absolute error loss with L1 regularization - see section 4.4.5. for more info on regularization).
Note - In the code you can see we use Adam
(with learning rate
of .01) as an optimizer. Don‘t pay too much attention on that now - there is a section specially dedicated to explain what hyperparameters we use (learning rate is excluded as we have learning rate scheduler - section 4.4.3.) and how we optimize these hyperparameters - section 4.6.
gan_num_features = dataset_total_df.shape[1]
sequence_length = 17
class RNNModel(gluon.Block):
def __init__(self, num_embed, num_hidden, num_layers, bidirectional=False, sequence_length=sequence_length, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.num_hidden = num_hidden
with self.name_scope():
self.rnn = rnn.LSTM(num_hidden, num_layers, input_size=num_embed, bidirectional=bidirectional, layout=‘TNC‘)
self.decoder = nn.Dense(1, in_units=num_hidden)
def forward(self, inputs, hidden):
output, hidden = self.rnn(inputs, hidden)
decoded = self.decoder(output.reshape((-1, self.num_hidden)))
return decoded, hidden
def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)
lstm_model = RNNModel(num_embed=gan_num_features, num_hidden=500, num_layers=1)
lstm_model.collect_params().initialize(mx.init.Xavier(), ctx=mx.cpu())
trainer = gluon.Trainer(lstm_model.collect_params(), ‘adam‘, {‘learning_rate‘: .01})
loss = gluon.loss.L1Loss()
We will use 500 neurons in the LSTM layer and use Xavier initialization. For regularization we‘ll use L1. Let‘s see what‘s inside the LSTM
as printed by MXNet.
print(lstm_model)
RNNModel(
(rnn): LSTM(112 -> 500, TNC)
(decoder): Dense(500 -> 1, linear)
)
As we can see, the input of the LSTM are the 112 features (dataset_total_df.shape[1]
) which then go into 500 neurons in the LSTM layer, and then transformed to a single output - the stock price value.
The logic behind the LSTM is: we take 17 (sequence_length
) days of data (again, the data being the stock price for GS stock every day + all the other feature for that day - correlated assets, sentiment, etc.) and try to predict the 18th day.
In another post I will explore whether modification over the vanilla LSTM would be more beneficial, such as:
One of the most important hyperparameters is the learning rate. Setting the learning rate for almost every optimizer (such as SGD, Adam, or RMSProp) is crucially important when training neural networks because it controls both the speed of convergence and the ultimate performance of the network. One of the simplest learning rate strategies is to have a fixed learning rate throughout the training process. Choosing a small learning rate allows the optimizer find good solutions, but this comes at the expense of limiting the initial speed of convergence. Changing the learning rate over time can overcome this tradeoff.
Recent papers, such as this, show the benefits of changing the global learning rate during training, in terms of both convergence and time.
class TriangularSchedule():
def __init__(self, min_lr, max_lr, cycle_length, inc_fraction=0.5):
self.min_lr = min_lr
self.max_lr = max_lr
self.cycle_length = cycle_length
self.inc_fraction = inc_fraction
def __call__(self, iteration):
if iteration <= self.cycle_length*self.inc_fraction:
unit_cycle = iteration * 1 / (self.cycle_length * self.inc_fraction)
elif iteration <= self.cycle_length:
unit_cycle = (self.cycle_length - iteration) * 1 / (self.cycle_length * (1 - self.inc_fraction))
else:
unit_cycle = 0
adjusted_cycle = (unit_cycle * (self.max_lr - self.min_lr)) + self.min_lr
return adjusted_cycle
class CyclicalSchedule():
def __init__(self, schedule_class, cycle_length, cycle_length_decay=1, cycle_magnitude_decay=1, **kwargs):
self.schedule_class = schedule_class
self.length = cycle_length
self.length_decay = cycle_length_decay
self.magnitude_decay = cycle_magnitude_decay
self.kwargs = kwargs
def __call__(self, iteration):
cycle_idx = 0
cycle_length = self.length
idx = self.length
while idx <= iteration:
cycle_length = math.ceil(cycle_length * self.length_decay)
cycle_idx += 1
idx += cycle_length
cycle_offset = iteration - idx + cycle_length
schedule = self.schedule_class(cycle_length=cycle_length, **self.kwargs)
return schedule(cycle_offset) * self.magnitude_decay**cycle_idx
schedule = CyclicalSchedule(TriangularSchedule, min_lr=0.5, max_lr=2, cycle_length=500)
iterations=1500
plt.plot([i+1 for i in range(iterations)],[schedule(i) for i in range(iterations)])
plt.title(‘Learning rate for each epoch‘)
plt.xlabel("Epoch")
plt.ylabel("Learning Rate")
plt.show()
Having a lot of features and neural networks we need to make sure we prevent overfitting and be mindful of the total loss.
We use several techniques for preventing overfitting (not only in the LSTM, but also in the CNN and the auto-encoders):
Another important consideration when building complex neural networks is the bias-variance trade-off. Basically, the error we get when training nets is a function of the bias, the variance, and irreducible error - σ (error due to noise and randomness). The simplest formula of the trade-off is:
$$Error = bias^{2} + variance + \sigma$$
We usually use CNNs for work related to images (classification, context extraction, etc). They are very powerful at extracting features from features from features, etc. For example, in an image of a dog, the first convolutional layer will detect edges, the second will start detecting circles, and the third will detect a nose. In our case, data points form small trends, small trends form bigger, trends in turn form patterns. CNNs‘ ability to detect features can be used for extracting information about patterns in GS‘s stock price movements.
Another reason for using CNN is that CNNs work well on spatial data - meaning data points that are closer to each other are more related to each other, than data points spread across. This should hold true for time series data. In our case each data point (for each feature) is for each consecutive day. It is natural to assume that the closer two days are to each other, the more related they are to each other. One thing to consider (although not covered in this work) is seasonality and how it might change (if at all) the work of the CNN.
Note: As many other parts in this notebook, using CNN for time series data is experimental. We will inspect the results, without providing mathematical or other proofs. And results might vary using different data, activation functions, etc.
Figure 11: High level overview of the CNN architecture.
The code for the CNN inside the GAN looks like this:
num_fc = 512
# ... other parts of the GAN
cnn_net = gluon.nn.Sequential()
with net.name_scope():
# Add the 1D Convolutional layers
cnn_net.add(gluon.nn.Conv1D(32, kernel_size=5, strides=2))
cnn_net.add(nn.LeakyReLU(0.01))
cnn_net.add(gluon.nn.Conv1D(64, kernel_size=5, strides=2))
cnn_net.add(nn.LeakyReLU(0.01))
cnn_net.add(nn.BatchNorm())
cnn_net.add(gluon.nn.Conv1D(128, kernel_size=5, strides=2))
cnn_net.add(nn.LeakyReLU(0.01))
cnn_net.add(nn.BatchNorm())
# Add the two Fully Connected layers
cnn_net.add(nn.Dense(220, use_bias=False), nn.BatchNorm(), nn.LeakyReLU(0.01))
cnn_net.add(nn.Dense(220, use_bias=False), nn.Activation(activation=‘relu‘))
cnn_net.add(nn.Dense(1))
# ... other parts of the GAN
Let‘s print the CNN.
print(cnn_net)
Sequential(
(0): Conv1D(None -> 32, kernel_size=(5,), stride=(2,))
(1): LeakyReLU(0.01)
(2): Conv1D(None -> 64, kernel_size=(5,), stride=(2,))
(3): LeakyReLU(0.01)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(5): Conv1D(None -> 128, kernel_size=(5,), stride=(2,))
(6): LeakyReLU(0.01)
(7): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(8): Dense(None -> 220, linear)
(9): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(10): LeakyReLU(0.01)
(11): Dense(None -> 220, linear)
(12): Activation(relu)
(13): Dense(None -> 1, linear)
)
The hyperparameters that we will track and optimize are:
batch_size
: batch size of the LSTM and CNNcnn_lr
: the learningrate of the CNNstrides
: the number of strides in the CNNlrelu_alpha
: the alpha for the LeakyReLU in the GANbatchnorm_momentum
: momentum for the batch normalisation in the CNNpadding
: the padding in the CNNkernel_size‘:1
: kernel size in the CNNdropout
: dropout in the LSTMfilters
: the initial number of filtersWe will train over 200 epochs
.
After the GAN trains on the 200 epochs it will record the MAE (which is the error function in the LSTM, the $G$) and pass it as a reward value to the Reinforcement learning that will decide whether to change the hyperparameters of keep training with the same set of hyperparameters. As described later, this approach is strictly for experimenting with RL.
If the RL decides it will update the hyperparameters it will call Bayesian optimisation (discussed below) library that will give the next best expected set of the hyperparams.
Why do we use reinforcement learning in the hyperparameters optimization? Stock markets change all the time. Even if we manage to train our GAN and LSTM to create extremely accurate results, the results might only be valid for a certain period. Meaning, we need to constantly optimise the whole process. To optimize the process we can:
Note: The purpose of the whole reinforcement learning part of this notebook is more research oriented. We will explore different RL approaches using the GAN as an environment. There are many ways in which we can successfully perform hyperparameter optimization on our deep learning models without using RL. But... why not.
Note: The next several sections assume you have some knowledge about RL - especially policy methods and Q-learning.
Without explaining the basics of RL we will jump into the details of the specific approaches we implement here. We will use model-free RL algorithms for the obvious reason that we do not know the whole environment, hence there is no defined model for how the environment works - if there was we wouldn‘t need to predict stock prices movements - they will just follow the model. We will use the two subdivisions of model-free RL - Policy optimization and Q-learning.
One crucial aspect of building a RL algorithm is accurately setting the reward. It has to capture all aspects of the environment and the agent‘s interaction with the environment. We define the reward, R, as:
$$Reward = 2*loss_G + loss_D + accuracy_G,$$
where $loss_G$, $accuracy_G$, and $loss_D$ are the Generator‘s loss and accuracy, and Discriminator‘s loss, respectively. The environment is the GAN and the results of the LSTM training. The action the different agents can take is how to change the hyperparameters of the GAN‘s $D$ and $G$ nets.
What is Rainbow?
Rainbow (link) is a Q learning based off-policy deep reinforcement learning algorithm combining seven algorithm together:
Proximal Policy Optimization (PPO) is a policy optimization model-free type of reinforcement learning. It is much simpler to implement that other algorithms and gives very good results.
Why do we use PPO? One of the advantages of PPO is that it directly learns the policy, rather than indirectly via the values (the way Q Learning uses Q-values to learn the policy). It can work well in continuous action spaces, which is suitable in our use case and can learn (through mean and standard deviation) the distribution probabilities (if softmax is added as an output).
The problem of policy gradient methods is that they are extremely sensitive to the step size choice - if it is small the progress takes too long (most probably mainly due to the need of a second-order derivatives matrix); if it is large, there is a lot noise which significantly reduces the performance. Input data is nonstationary due to the changes in the policy (also the distributions of the reward and observations change). As compared to supervised learning, poorly chosen step can be much more devastating as it affects the whole distribution of next visits. PPO can solve these issues. What is more, compared to some other approaches, PPO:
Note: For the purpose of our exercise we won‘t go too much into the research and optimization of RL approaches, PPO and the others included. Rather, we will take what is available and try to fit into our process for hyperparameter optimization for our GAN, LSTM, and CNN models. The code we will reuse and customize is created by OpenAI and is available here.
Some ideas for further exploring reinforcement learning:
Instead of the grid search, that can take a lot of time to find the best combination of hyperparameters, we will use Bayesian optimization. The library that we‘ll use is already implemented - link.
The next part of the code only shows the initialization.
# Initialize the optimizer
from bayes_opt import BayesianOptimization
from bayes_opt import UtilityFunction
utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0)
from utils import plot_prediction
Finally we will compare the output of the LSTM when the unseen (test) data is used as an input after different phases of the process.
plot_prediction(‘Predicted and Real price - after first epoch.‘)
plot_prediction(‘Predicted and Real price - after first 50 epochs.‘)
plot_prediction(‘Predicted and Real price - after first 200 epochs.‘)
The RL run for ten episodes (we define an eposide to be one full GAN training on the 200 epochs.)
plot_prediction(‘Final result.‘)
www.linkedin.com/in/borisbanushev
This notebook is entirely informative. None of the content presented in this notebook constitutes a recommendation that any particular security, portfolio of securities, transaction or investment strategy is suitable for any specific person. Futures, stocks and options trading involves substantial risk of loss and is not suitable for every investor. The valuation of futures, stocks and options may fluctuate, and, as a result, clients may lose more than their original investment.
All trading strategies are used at your own risk.
There are many many more details to explore - in choosing data features, in choosing algorithms, in tuning the algos, etc. This version of the notebook itself took me 2 weeks to finish. I am sure there are many unaswered parts of the process. So, any comments and suggestion - please do share. I‘d be happy to add and test any ideas in the current process.
Thanks for reading.
Best, Boris
(zhuan) Using the latest advancements in AI to predict stock market movements
标签:recent promise step param import specific schema call instance
原文地址:https://www.cnblogs.com/wangxiaocvpr/p/10264141.html