标签:idf parse ike 开启 oar document 1.2 数据 search
现实世界中多数特征都不是连续变量,比如分类、文字、图像等,为了对非连续变量做特征表述,需要对这些特征做数学化表述,因此就用到了特征提取. sklearn.feature_extraction提供了特征提取的很多方法
我们将城市和环境作为字典数据,来进行特征的提取。
sklearn.feature_extraction.DictVectorizer(sparse = True)
将映射列表转换为Numpy数组或scipy.sparse矩阵
fit_transform(X,y)
应用并转化映射列表X,y为目标类型
inverse_transform(X[, dict_type])
将Numpy数组或scipy.sparse矩阵转换为映射列表
from sklearn.feature_extraction import DictVectorizer onehot = DictVectorizer() # 如果结果不用toarray,请开启sparse=False instances = [{‘city‘: ‘北京‘,‘temperature‘:100},{‘city‘: ‘上海‘,‘temperature‘:60}, {‘city‘: ‘深圳‘,‘temperature‘:30}] X = onehot.fit_transform(instances).toarray() print(onehot.inverse_transform(X))
文本的特征提取应用于很多方面,比如说文档分类、垃圾邮件分类和新闻分类。那么文本分类是通过词是否存在、以及词的概率(重要性)来表示。
(1)文档的中词的出现
数值为1表示词表中的这个词出现,为0表示未出现
sklearn.feature_extraction.text.CountVectorizer()
将文本文档的集合转换为计数矩阵(scipy.sparse matrices)
fit_transform(raw_documents,y)
学习词汇词典并返回词汇文档矩阵
from sklearn.feature_extraction.text import CountVectorizer content = ["life is short,i like python","life is too long,i dislike python"] vectorizer = CountVectorizer() print(vectorizer.fit_transform(content).toarray())
需要toarray()方法转变为numpy的数组形式
温馨提示:每个文档中的词,只是整个语料库中所有词,的很小的一部分,这样造成特征向量的稀疏性(很多值为0)为了解决存储和运算速度的问题,使用Python的scipy.sparse矩阵结构
(2)TF-IDF表示词的重要性
TfidfVectorizer会根据指定的公式将文档中的词转换为概率表示。(朴素贝叶斯介绍详细的用法)
class sklearn.feature_extraction.text.TfidfVectorizer()
fit_transform(raw_documents,y)
学习词汇和idf,返回术语文档矩阵。
from sklearn.feature_extraction.text import TfidfVectorizer content = ["life is short,i like python","life is too long,i dislike python"] vectorizer = TfidfVectorizer(stop_words=‘english‘) print(vectorizer.fit_transform(content).toarray()) print(vectorizer.vocabulary_)
标签:idf parse ike 开启 oar document 1.2 数据 search
原文地址:https://www.cnblogs.com/alexzhang92/p/10070190.html