标签:pre algorithm getch ++ == return log get oid
浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html
题目传送门:http://poj.org/problem?id=1442
用对顶堆维护第\(k\)小即可。保持小根堆大小逐渐递增就行。
时间复杂度:\(O(mlogn)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=3e4+5;
int n,m;
int a[maxn],u[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct Heap {
int tot;
int tree[maxn];
void ins(int v) {
tree[++tot]=v;
int pos=tot;
while(pos>1) {
if(tree[pos]<tree[pos>>1])
swap(tree[pos],tree[pos>>1]),pos>>=1;
else break;
}
}
int pop() {
int res=tree[1];
tree[1]=tree[tot--];
int pos=1,son=2;
while(son<=tot) {
if(son<tot&&tree[son|1]<tree[son])son|=1;
if(tree[son]<tree[pos])
swap(tree[son],tree[pos]),pos=son,son=pos<<1;
else break;
}
return res;
}
}T1,T2;
int main() {
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=m;i++)
u[i]=read();
sort(u+1,u+m+1);
for(int i=1,st=1;i<=m;i++) {
while(st<=u[i]) {
if(a[st]>=T1.tree[1])T1.ins(a[st]);
else T2.ins(-a[st]);
st++;
}
while(T2.tot<i)T2.ins(-T1.pop());
while(T2.tot>i)T1.ins(-T2.pop());
printf("%d\n",-T2.tree[1]);
}
return 0;
}
标签:pre algorithm getch ++ == return log get oid
原文地址:https://www.cnblogs.com/AKMer/p/10286480.html