标签:mat ret 转移 || 多少 temp its display pre
先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口)。\(n\leq20\),考虑状压\(DP\)
考虑一个最大前缀和\(\sum\limits_{i=1}^pa_i\),这个位置\(p\)是最大前缀和的右界当且仅当对于\(\forall r>p\)有:\(\sum\limits_{i=p+1}^ra_i\leq0\)
设\(sum_i\)表示二进制状态\(i\)的代数和,方便转移
设\(g_i\)表示选了子集\(i\)后有多少种排列使得所有的前缀和都\(<0\),于是有(从下转移而来):
\[
g[i] += g[i \oplus (1 << j)]\ (sum[i]\leq0,sum[i\oplus(1<<j)]\leq0)
\]
设\(f_i\)表示选了子集\(i\)后有多少种排列使得最大前缀和\(=sum_i\),于是有(向上转移):
\[
f[i \ | \ (1 << j)]+=f[i]\ (sum[i]>0)
\]
则最后答案就是(\(m\oplus i\)表示\(i\)的补集):
\[
ans=\sum_{i\in S}sum_i\times f_i \times g_{m\oplus i}
\]
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 22, P = 998244353;
int n, m, a[1 << N], f[1 << N], g[1 << N], sum[1 << N], ret;
int lb(int x) { return x & -x; }
int main () {
read(n), m = (1 << n) - 1;
for(int i = 0; i < n; ++i) read(a[1 << i]);
for(int i = 0; i <= m; ++i)
sum[i] = sum[i ^ lb(i)] + a[lb(i)];
g[0] = 1;
for(int i = 0; i < n; ++i) f[1 << i] = 1;
for(int i = 0; i <= m; ++i) {
if(sum[i] <= 0) {
for(int j = 0; j < n; ++j)
if((1 << j) & i && sum[i ^ (1 << j)] <= 0)
(g[i] += g[i ^ (1 << j)]) %= P;
}
}
for(int i = 0; i <= m; ++i) {
if(sum[i] > 0) {
for(int j = 0; j < n; ++j)
if(!((1 << j) & i)) (f[i | (1 << j)] += f[i]) %= P;
}
(ret += 1ll * (sum[i] + P) % P * f[i] % P * g[m ^ i] % P) %= P;
}
printf("%d\n", ret);
return 0;
}
Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)
标签:mat ret 转移 || 多少 temp its display pre
原文地址:https://www.cnblogs.com/water-mi/p/10288035.html