码迷,mamicode.com
首页 > 其他好文 > 详细

整数拆分

时间:2019-01-19 00:02:14      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:i++   编写程序   long   iostream   存在   拆分   end   stream   数据   

题目描述

一个整数总可以拆分为2的幂的和,例如:

7=1+2+4
7=1+2+2+2
7=1+1+1+4
7=1+1+1+2+2
7=1+1+1+1+1+2
7=1+1+1+1+1+1+1

总共有六种不同的拆分方式。 再比如:4可以拆分成:

4 = 4
4 = 1 + 1 + 1 + 1
4 = 2 + 2
4=1+1+2

用f(n)表示n的不同拆分的种数,例如f(7)=6. 要求编写程序,读入n(不超过1000000),输出f(n)%1000000000。

输入描述:

每组输入包括一个整数:N(1<=N<=1000000)。

输出描述:

对于每组数据,输出f(n)%1000000000。

分析

1 当n是偶数时(n == 2m),那么就存在两种划分,一种是带有1的,另一种是没有1的,对于带有1的划分,每一个划分都减去1,就是n-1的划分;对于没有1的划分,把每一一个式子都除以2,划分的种类不变,就变成了n / 2的划分。于是:

f(2m) = f(2m - 1) + f(m)

2当n是奇数时(n == 2m + 1),对于奇数每一个划分都肯定会有一个1,那么把这个1减掉,划分的种类不变,转化为n - 1的划分。于是:

f(2m + 1) = f(2m)

3初始条件应该是f(1) = 1

#include <iostream>
using namespace std;

long a[1000002];


// f(2m) = f(2m - 1) + f(m)
// f(2m + 1) = f(2m)

int fun(int n){
    a[0] = a[1] = 1;
    for(int i = 2; i < 1000002; i++){
        if(i % 2 == 0){
            a[i] = (a[i - 1] + a[i/2])%1000000000;
        }
        else{
            a[i] = a[i - 1]%1000000000;
        }
    }
    return a[n];
}

int main(){
    int n;
    while(cin >> n){
        cout << fun(n) << endl;
    }
    return 0;
}

整数拆分

标签:i++   编写程序   long   iostream   存在   拆分   end   stream   数据   

原文地址:https://www.cnblogs.com/zhuobo/p/10290118.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!