标签:color int 案例分析 return form pytho get arm pre
def linearmodel(): """ 线性回归对波士顿数据集处理 :return: None """ # 1、加载数据集 ld = load_boston() x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25) # 2、标准化处理 # 特征值处理 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 目标值进行处理 std_y = StandardScaler() y_train = std_y.fit_transform(y_train) y_test = std_y.transform(y_test) # 3、估计器流程 # LinearRegression lr = LinearRegression() lr.fit(x_train,y_train) # print(lr.coef_) y_lr_predict = lr.predict(x_test) y_lr_predict = std_y.inverse_transform(y_lr_predict) print("Lr预测值:",y_lr_predict) # SGDRegressor sgd = SGDRegressor() sgd.fit(x_train,y_train) # print(sgd.coef_) y_sgd_predict = sgd.predict(x_test) y_sgd_predict = std_y.inverse_transform(y_sgd_predict) print("SGD预测值:",y_sgd_predict) # 带有正则化的岭回归 rd = Ridge(alpha=0.01) rd.fit(x_train,y_train) y_rd_predict = rd.predict(x_test) y_rd_predict = std_y.inverse_transform(y_rd_predict) print(rd.coef_) # 两种模型评估结果 print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict)) print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict)) print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict)) return None
标签:color int 案例分析 return form pytho get arm pre
原文地址:https://www.cnblogs.com/alexzhang92/p/10070275.html