码迷,mamicode.com
首页 > 其他好文 > 详细

RNN 循环神经网络-BF 求导过程

时间:2019-01-21 21:11:53      阅读:492      评论:0      收藏:0      [点我收藏+]

标签:也会   而且   图片   公式   span   class   使用   play   部分   

RNN 循环神经网络-BF 求导过程

所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层

技术分享图片

在时间视角上的显示为下图:

技术分享图片技术分享图片

技术分享图片

求导BP 更新参数值

整体误差E等于每个时刻E_t的误差之和

整体损失对U/V/W进行求偏导
\[ ΔU=\frac{\partial E}{\partial U}=\sum_t \frac{\partial e_t}{\partial U} \]
\[ ΔV=\frac{\partial E}{\partial V}=\sum_t \frac{\partial e_t}{\partial V} \]
\[ ΔW=\frac{\partial E}{\partial W}=\sum_t \frac{\partial e_t}{\partial W} \]

ΔU 求导:对于Ot=g(V*St) 求ΔU是简单的,St是输出值已知,不依赖之前的状态,可以直接求导每一个时刻的 ΔW 求导:Wt 不仅影响Et, 而且也会印象到Et+1(因为在计算Et+1的使用包含St的值),并且Wt-1 也会印象到Et+1.

例如t+1时刻的误差Et+1,我们去计算w1,w2...wt+1的梯度值
\[ \frac{\partial e_{t+1}}{\partial W^{t+1}}= \frac{\partial e_{t+1}}{\partial h^{t+1}} \frac{\partial h_{t+1}}{\partial W^{t+1}} \]

\[ \frac{\partial e_{t+1}}{\partial W^{t}}= \frac{\partial e_{t+1}}{\partial h^{t+1}} \frac{\partial h_{t+1}}{\partial h^{t}}\frac{\partial h_{t}}{\partial W^{t}} \]

\[ \frac{\partial e_{t+1}}{\partial W^{t-1}}= \frac{\partial e_{t+1}}{\partial h^{t+1}} \frac{\partial h_{t+1}}{\partial h^{t}}\frac{\partial h_{t}}{\partial h^{t-1}}\frac{\partial h_{t-1}}{\partial w^{t-1}} ...... \]

因为RNN中的参数值是共享的 所以Wt=Wt-1=Wt-2 ,同理其他参数也是一样的,所以计算上述公式时就可以抹去标签并求和了。

? 因为有符合函数求导公式
\[ f(x)=g(x)h(x) \text{求导得} \frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}*h+\frac{\partial h}{\partial x}*g \]

\[ \text{原函数:} h_{t+1}=f(Ux+W_{t+1}h_t) \]

其中Ux不包含W,可以不用考虑,当做常数,f 是一个整体转化 可以忽略成 Ht+1=Ht*Wt+1其中包含两部分Ht和Wt+1,依照上面的两个函数求导法制。

\[ \frac{\partial e_{t+1}}{\partial W^{t+1}}= \frac{\partial e_{t+1}}{\partial h^{t+1}} *h^t \]

\[ \frac{\partial e_{t+1}}{\partial W^{t}}= \frac{\partial e_{t+1}}{\partial h^{t+1}} *W*h^{t-1} \]

\[ \frac{\partial e_{t+1}}{\partial W^{t-1}}= \frac{\partial e_{t+1}}{\partial h^{t+1}}*W*W*h^{t-2} \]

将上述式子求和得
\[ \frac{\partial e_t}{\partial W}= \sum_{k=1}^t\frac{\partial e_t}{\partial h^t}\prod_{i=k}^t\frac{\partial h_i}{\partial h^{i-1}}\frac{\partial ^+ h_k}{\partial W} \]
其中下式 表示不进行链式求导,将其他参数都看做常数,直接进行求导。
\[ \frac{\partial ^+ h_k}{\partial W} \]

RNN 循环神经网络-BF 求导过程

标签:也会   而且   图片   公式   span   class   使用   play   部分   

原文地址:https://www.cnblogs.com/zhuimengzhe/p/10300738.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!