码迷,mamicode.com
首页 > 其他好文 > 详细

1.2 eigen中矩阵和向量的运算

时间:2019-01-21 22:50:05      阅读:239      评论:0      收藏:0      [点我收藏+]

标签:相加   mat   minimum   2dx   uac   version   a*   检查   size   

 

1.2 矩阵和向量的运算

 


 

1.介绍

 


 

eigen给矩阵和向量的算术运算提供重载的c++算术运算符例如+-*或这一些点乘dot(),叉乘cross()等等。对于矩阵类(矩阵和向量,之后统称为矩阵类),算术运算只重载线性代数的运算。例如matrix1*matrix2表示矩阵的乘法,同时向量+标量是不允许的!如果你想进行所有的数组算术运算,请看下一节!

 


 

2.加减法

 


 

因为eigen库无法自动进行类型转换,因此矩阵类的加减法必须是两个同类型同维度的矩阵类相加减。

 

这些运算有:

 

双目运算符:+a+b

 

双目运算符:-a-b

 

单目运算符:--a

 

复合运算符:+=a+=b

 

复合运算符:-=a-=b

 

例子:

 

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d a;

a << 1, 2,

3, 4;

MatrixXd b(2,2);

b << 2, 3,

1, 4;

std::cout << "a + b =\n" << a + b << std::endl;

std::cout << "a - b =\n" << a - b << std::endl;

std::cout << "Doing a += b;" << std::endl;

a += b;

std::cout << "Now a =\n" << a << std::endl;

Vector3d v(1,2,3);

Vector3d w(1,0,0);

std::cout << "-v + w - v =\n" << -v + w - v << std::endl;

}

 


 

3.标量乘法和除法

 

标量的乘除法非常简单:

 

双目运算符:*matrix*scalar

 

双目运算符:*scalar*matrix

 

即乘法满足交换律

 

双目运算符:/matrix/scalar

 

矩阵中的每一个元素除以标量

 

复合运算符:*=matrix*=scalar

 

复合运算符:/=matrix/=scalar

 

 

 

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d a;

a << 1, 2,

3, 4;

Vector3d v(1,2,3);

std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;

std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;

std::cout << "Doing v *= 2;" << std::endl;

v *= 2;

std::cout << "Now v =\n" << v << std::endl;

}

//output

a * 2.5 =

2.5 5

7.5 10

0.1 * v =

0.1

0.2

0.3

Doing v *= 2;

Now v =

2

4

6

 

 


 

4.对表达式模板的注释

 


 

eigen中,+号算术运算符不会通过自身函数执行任何计算,它们只是返回一个表达式,来描述计算的过程。实际的计算是在执行等号时,整个表达式开

始进行计算。

 

比如:

 

VectorXf a(50), b(50), c(50), d(50);

...

a = 3*b + 4*c + 5*d;

 

eigen把它编译成一个循环,这样数组只执行依次运算,就像下列循环一样:

 

for(int i = 0; i < 50; ++i)

a[i] = 3*b[i] + 4*c[i] + 5*d[i];

 

 

 

因此,在eigen 中,你不必担心使用相当大的算术运算表达式,它会提供给eigen更多优化代码的机会。

 


 

5.转置和共轭

 


 

矩阵类的成员函数transpose(),conjugate(),adjoint(),分别对应矩阵的转置技术分享图片 ,共轭技术分享图片 ,共轭转置矩阵技术分享图片特此说明adjoint()并不表示伴随矩

阵,而是共轭转置矩阵!!!!

 

例子:

 

MatrixXcf a = MatrixXcf::Random(2,2);//生成随机的复数类型矩阵

cout << "Here is the matrix a\n" << a << endl;

cout << "Here is the matrix a^T\n" << a.transpose() << endl;

cout << "Here is the conjugate of a\n" << a.conjugate() << endl;

cout << "Here is the matrix a^*\n" << a.adjoint() << endl;


//output

Here is the matrix a

(-0.211,0.68) (-0.605,0.823)

(0.597,0.566) (0.536,-0.33)

Here is the matrix a^T

(-0.211,0.68) (0.597,0.566)

(-0.605,0.823) (0.536,-0.33)

Here is the conjugate of a

(-0.211,-0.68) (-0.605,-0.823)

(0.597,-0.566) (0.536,0.33)

Here is the matrix a^*

(-0.211,-0.68) (0.597,-0.566)

(-0.605,-0.823) (0.536,0.33)

 


 

对于实矩阵,是没有共轭矩阵的,同时它的共轭转置矩阵(adjoint())等于它的转置(transpose()).

 


 

对于基本的算术运算,转置和共轭转置函数返回的是矩阵的引用,而不会实际转换矩阵对象。如果你对bb=a.transpose(),这个将在求转置矩阵的同时,

将结果赋值给b。但是如果将a=a.transpose(),eigen将会在计算a的转置完成之前开始赋值结果给a,因此,这样的赋值将不会将a替换成它的转置,而是:

 

Matrix2i a; a << 1, 2, 3, 4;

cout << "Here is the matrix a:\n" << a << endl;

a = a.transpose(); // !!! do NOT do this !!!

cout << "and the result of the aliasing effect:\n" << a << endl;


//output

Here is the matrix a:

1 2

3 4

and the result of the aliasing effect:

1 2

2 4

 


 

结果不再是a的转置,而是发生了混叠(aliasing issue.在调试模式中,在到达断点之前,这样的错误很容易被检测到。

 

为了将a替换为a的转置矩阵,可以使用transposeInPlace()函数:

 

MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;

cout << "Here is the initial matrix a:\n" << a << endl;

a.transposeInPlace();

cout << "and after being transposed:\n" << a << endl;

//output

Here is the initial matrix a:

1 2 3

4 5 6

and after being transposed:

1 4

2 5

3 6

 

 

同样地,对于共轭转置矩阵(adjoint())也有类似的成员函数(adjointInPlace()).

 


 

6.矩阵-矩阵乘法和矩阵-向量乘法

 


 

矩阵乘法使用*运算符;

 

双目运算符:a*b

 

复合运算符:a*=b

 

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d mat;

mat << 1, 2,

3, 4;

Vector2d u(-1,1), v(2,0);

std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;

std::cout << "Here is mat*u:\n" << mat*u << std::endl;

std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;

std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;

std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;

std::cout << "Let‘s multiply mat by itself" << std::endl;

mat = mat*mat;

std::cout << "Now mat is mat:\n" << mat << std::endl;

}


//output

Here is mat*mat:

7 10

15 22

Here is mat*u:

1

1

Here is u^T*mat:

2 2

Here is u^T*v:

-2

Here is u*v^T:

-2 -0

2 0

Lets multiply mat by itself

Now mat is mat:

7 10

15 22

 


 

说明,前述表达式m=m*m可能会引起混叠的问题,但是对于矩阵乘法而言,不必担心:eigen将矩阵的乘法看作一种特殊的情况,它引入一个临时变量,

因此它将编译成以下代码:

 

tmp = m*m;

m = tmp;

 


 

如果你想让矩阵乘法安全的进行计算而没有混叠问题,你可以使用noalias()成员函数来避免临时变量的问题,例如:

 


 

 

c.noalias() += a * b;

 


 

7.点乘和叉乘

 

点乘dot(),叉乘cross().点乘也可以使用u.adjoint()*v

 

例子:

 

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

using namespace std;

int main()

{

Vector3d v(1,2,3);

Vector3d w(0,1,2);

cout << "Dot product: " << v.dot(w) << endl;//点乘

double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar

cout << "Dot product via a matrix product: " << dp << endl;

cout << "Cross product:\n" << v.cross(w) << endl;//叉乘

}

//output

Dot product: 8

Dot product via a matrix product: 8

Cross product:

1

-2

1

 

 

注意:叉乘只能用于维数为3的向量,点乘使用于任何维数的向量。当使用复数时,第一个变量是共轭线性运算,第二个是线性运算。

 


 

8.基本的算术化简计算

 


 

eigen提供一些简化计算将给定的矩阵或向量编程单个值,比如对矩阵的所有元素求和sum(),求积prod(),求最大值maxCoeff()和求最小值

minCoeff()

 


 

#include <iostream>

#include <Eigen/Dense>

using namespace std;

int main()

{

Eigen::Matrix2d mat;

mat << 1, 2,

3, 4;

cout << "Here is mat.sum(): " << mat.sum() << endl;//对矩阵所有元素求和

cout << "Here is mat.prod(): " << mat.prod() << endl;//对矩阵所有元素求积

cout << "Here is mat.mean(): " << mat.mean() << endl;//对矩阵所有元素求平均值

cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;//取矩阵的元素最小值

cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;//取矩阵元素的最大值

cout << "Here is mat.trace(): " << mat.trace() << endl;//取矩阵元素的迹

}

//output

Here is mat.sum(): 10

Here is mat.prod(): 24

Here is mat.mean(): 2.5

Here is mat.minCoeff(): 1

Here is mat.maxCoeff(): 4

Here is mat.trace(): 5

 

 

矩阵的迹返回的是矩阵对角线元素的和,等价于a.diagonal().sum().

 


 

同时求最大值和最小值的函数可以接受引用的实参,来表示其最大最小值的行数和列数:

 

Matrix3f m = Matrix3f::Random();

std::ptrdiff_t i, j;//i,j是一个整型类型

float minOfM = m.minCoeff(&i,&j);//矩阵可以接受两个引用参数

cout << "Here is the matrix m:\n" << m << endl;

cout << "Its minimum coefficient (" << minOfM << ") is at position (" << i << "," << j << ")\n\n";//输出最小值所在行数列数

RowVector4i v = RowVector4i::Random();

int maxOfV = v.maxCoeff(&i);//向量只接受一个引用参数

cout << "Here is the vector v: " << v << endl;

cout << "Its maximum coefficient (" << maxOfV << ") is at position " << i << endl;//输出最大值所在列数


//output

Here is the matrix m:

0.68 0.597 -0.33

-0.211 0.823 0.536

0.566 -0.605 -0.444

Its minimum coefficient (-0.605) is at position (2,1)


Here is the vector v: 1 0 3 -3

Its maximum coefficient (3) is at position 2

 

 


 

9.运算的有效性

 


 

eigen库会检查你定义的运算。通常它在编译时检查并产生错误信息。这些错误信息可能很长很丑,但是eigen将重要信息用大写字母来显示出,例如:

 

Matrix3f m;

Vector4f v;

v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES

 

 

 

在许多情况下,当使用动态绑定矩阵时,编译器将不会在编译时检查,eigen将会在运行时检查,yejiuis说程序有可能因为不合法的运算而中断。

 

MatrixXf m(3,3);

VectorXf v(4);

v = m * v; // Run-time assertion failure here: "invalid matrix product"

 

 

1.2 矩阵和向量的运算


1.介绍


eigen给矩阵和向量的算术运算提供重载的c++算术运算符例如+-*或这一些点乘dot(),叉乘cross()等等。对于矩阵类(矩阵和向量,之后统称为矩阵类),算术运算只重载线性代数的运算。例如matrix1*matrix2表示矩阵的乘法,同时向量+标量是不允许的!如果你想进行所有的数组算术运算,请看下一节!


2.加减法


因为eigen库无法自动进行类型转换,因此矩阵类的加减法必须是两个同类型同维度的矩阵类相加减。

这些运算有:

双目运算符:+a+b

双目运算符:-a-b

单目运算符:--a

复合运算符:+=a+=b

复合运算符:-=a-=b

例子:

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d a;

a << 1, 2,

3, 4;

MatrixXd b(2,2);

b << 2, 3,

1, 4;

std::cout << "a + b =\n" << a + b << std::endl;

std::cout << "a - b =\n" << a - b << std::endl;

std::cout << "Doing a += b;" << std::endl;

a += b;

std::cout << "Now a =\n" << a << std::endl;

Vector3d v(1,2,3);

Vector3d w(1,0,0);

std::cout << "-v + w - v =\n" << -v + w - v << std::endl;

}


3.标量乘法和除法

标量的乘除法非常简单:

双目运算符:*matrix*scalar

双目运算符:*scalar*matrix

即乘法满足交换律

双目运算符:/matrix/scalar

矩阵中的每一个元素除以标量

复合运算符:*=matrix*=scalar

复合运算符:/=matrix/=scalar

Output:

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d a;

a << 1, 2,

3, 4;

Vector3d v(1,2,3);

std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;

std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;

std::cout << "Doing v *= 2;" << std::endl;

v *= 2;

std::cout << "Now v =\n" << v << std::endl;

}

//output

a * 2.5 =

2.5 5

7.5 10

0.1 * v =

0.1

0.2

0.3

Doing v *= 2;

Now v =

2

4

6


4.对表达式模板的注释


eigen中,+号算术运算符不会通过自身函数执行任何计算,它们只是返回一个表达式,来描述计算的过程。实际的计算是在执行等号时,整个表达式开始进行计算。

比如:

VectorXf a(50), b(50), c(50), d(50);

...

a = 3*b + 4*c + 5*d;

eigen把它编译成一个循环,这样数组只执行依次运算,就像下列循环一样:

for(int i = 0; i < 50; ++i)

a[i] = 3*b[i] + 4*c[i] + 5*d[i];


因此,在eigen 中,你不必担心使用相当大的算术运算表达式,它会提供给eigen更多优化代码的机会。


5.转置和共轭


矩阵类的成员函数transpose(),conjugate(),adjoint(),分别对应矩阵的转置技术分享图片 ,共轭技术分享图片 ,共轭转置矩阵技术分享图片特此说明adjoint()并不表示伴随矩阵,而是共轭转置矩阵!!!!

例子:

MatrixXcf a = MatrixXcf::Random(2,2);//生成随机的复数类型矩阵

cout << "Here is the matrix a\n" << a << endl;

cout << "Here is the matrix a^T\n" << a.transpose() << endl;

cout << "Here is the conjugate of a\n" << a.conjugate() << endl;

cout << "Here is the matrix a^*\n" << a.adjoint() << endl;


//output

Here is the matrix a

(-0.211,0.68) (-0.605,0.823)

(0.597,0.566) (0.536,-0.33)

Here is the matrix a^T

(-0.211,0.68) (0.597,0.566)

(-0.605,0.823) (0.536,-0.33)

Here is the conjugate of a

(-0.211,-0.68) (-0.605,-0.823)

(0.597,-0.566) (0.536,0.33)

Here is the matrix a^*

(-0.211,-0.68) (0.597,-0.566)

(-0.605,-0.823) (0.536,0.33)


对于实矩阵,是没有共轭矩阵的,同时它的共轭转置矩阵(adjoint())等于它的转置(transpose()).


对于基本的算术运算,转置和共轭转置函数返回的是矩阵的引用,而不会实际转换矩阵对象。如果你对bb=a.transpose(),这个将在求转置矩阵的同时,将结果赋值给b。但是如果将a=a.transpose(),eigen将会在计算a的转置完成之前开始赋值结果给a,因此,这样的赋值将不会将a替换成它的转置,而是:

Matrix2i a; a << 1, 2, 3, 4;

cout << "Here is the matrix a:\n" << a << endl;

a = a.transpose(); // !!! do NOT do this !!!

cout << "and the result of the aliasing effect:\n" << a << endl;


//output

Here is the matrix a:

1 2

3 4

and the result of the aliasing effect:

1 2

2 4


结果不再是a的转置,而是发生了混叠(aliasing issue.在调试模式中,在到达断点之前,这样的错误很容易被检测到。

为了将a替换为a的转置矩阵,可以使用transposeInPlace()函数:

MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;

cout << "Here is the initial matrix a:\n" << a << endl;

a.transposeInPlace();

cout << "and after being transposed:\n" << a << endl;

//output

Here is the initial matrix a:

1 2 3

4 5 6

and after being transposed:

1 4

2 5

3 6


同样地,对于共轭转置矩阵(adjoint())也有类似的成员函数(adjointInPlace()).


6.矩阵-矩阵乘法和矩阵-向量乘法


矩阵乘法使用*运算符;

双目运算符:a*b

复合运算符:a*=b


#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

int main()

{

Matrix2d mat;

mat << 1, 2,

3, 4;

Vector2d u(-1,1), v(2,0);

std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;

std::cout << "Here is mat*u:\n" << mat*u << std::endl;

std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;

std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;

std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;

std::cout << "Let‘s multiply mat by itself" << std::endl;

mat = mat*mat;

std::cout << "Now mat is mat:\n" << mat << std::endl;

}


//output

Here is mat*mat:

7 10

15 22

Here is mat*u:

1

1

Here is u^T*mat:

2 2

Here is u^T*v:

-2

Here is u*v^T:

-2 -0

2 0

Let‘s multiply mat by itself

Now mat is mat:

7 10

15 22


说明,前述表达式m=m*m可能会引起混叠的问题,但是对于矩阵乘法而言,不必担心:eigen将矩阵的乘法看作一种特殊的情况,它引入一个临时变量,因此它将编译成以下代码:


tmp = m*m;

m = tmp;


如果你想让矩阵乘法安全的进行计算而没有混叠问题,你可以使用noalias()成员函数来避免临时变量的问题,例如:


c.noalias() += a * b;


7.点乘和叉乘

点乘dot(),叉乘cross().点乘也可以使用u.adjoint()*v

例子:

#include <iostream>

#include <Eigen/Dense>

using namespace Eigen;

using namespace std;

int main()

{

Vector3d v(1,2,3);

Vector3d w(0,1,2);

cout << "Dot product: " << v.dot(w) << endl;//点乘

double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar

cout << "Dot product via a matrix product: " << dp << endl;

cout << "Cross product:\n" << v.cross(w) << endl;//叉乘

}

//output

Dot product: 8

Dot product via a matrix product: 8

Cross product:

1

-2

1


注意:叉乘只能用于维数为3的向量,点乘使用于任何维数的向量。当使用复数时,第一个变量是共轭线性运算,第二个是线性运算。


8.基本的算术化简计算


eigen提供一些简化计算将给定的矩阵或向量编程单个值,比如对矩阵的所有元素求和sum(),求积prod(),求最大值maxCoeff()和求最小值minCoeff()


#include <iostream>

#include <Eigen/Dense>

using namespace std;

int main()

{

Eigen::Matrix2d mat;

mat << 1, 2,

3, 4;

cout << "Here is mat.sum(): " << mat.sum() << endl;//对矩阵所有元素求和

cout << "Here is mat.prod(): " << mat.prod() << endl;//对矩阵所有元素求积

cout << "Here is mat.mean(): " << mat.mean() << endl;//对矩阵所有元素求平均值

cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;//取矩阵的元素最小值

cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;//取矩阵元素的最大值

cout << "Here is mat.trace(): " << mat.trace() << endl;//取矩阵元素的迹

}

//output

Here is mat.sum(): 10

Here is mat.prod(): 24

Here is mat.mean(): 2.5

Here is mat.minCoeff(): 1

Here is mat.maxCoeff(): 4

Here is mat.trace(): 5

矩阵的迹返回的是矩阵对角线元素的和,等价于a.diagonal().sum().


同时求最大值和最小值的函数可以接受引用的实参,来表示其最大最小值的行数和列数:


Matrix3f m = Matrix3f::Random();

std::ptrdiff_t i, j;//i,j是一个整型类型

float minOfM = m.minCoeff(&i,&j);//矩阵可以接受两个引用参数

cout << "Here is the matrix m:\n" << m << endl;

cout << "Its minimum coefficient (" << minOfM

<< ") is at position (" << i << "," << j << ")\n\n";//输出最小值所在行数列数

RowVector4i v = RowVector4i::Random();

int maxOfV = v.maxCoeff(&i);//向量只接受一个引用参数

cout << "Here is the vector v: " << v << endl;

cout << "Its maximum coefficient (" << maxOfV

<< ") is at position " << i << endl;//输出最大值所在列数


//output

Here is the matrix m:

0.68 0.597 -0.33

-0.211 0.823 0.536

0.566 -0.605 -0.444

Its minimum coefficient (-0.605) is at position (2,1)


Here is the vector v: 1 0 3 -3

Its maximum coefficient (3) is at position 2


9.运算的有效性


eigen库会检查你定义的运算。通常它在编译时检查并产生错误信息。这些错误信息可能很长很丑,但是eigen将重要信息用大写字母来显示出,例如:

Matrix3f m;

Vector4f v;

v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES


在许多情况下,当使用动态绑定矩阵时,编译器将不会在编译时检查,eigen将会在运行时检查,yejiuis说程序有可能因为不合法的运算而中断。

MatrixXf m(3,3);

VectorXf v(4);

v = m * v; // Run-time assertion failure here: "invalid matrix product"

1.2 eigen中矩阵和向量的运算

标签:相加   mat   minimum   2dx   uac   version   a*   检查   size   

原文地址:https://www.cnblogs.com/excellentlhw/p/10301344.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!