标签:div ... 公倍数 c99 class info bcd alt tle
两种解释?道理一样。
1、
两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。。记作a≡b(mod.m)。
//?????
2、
给定一个正整数m,如果两个整数a,b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么称整数a和b对模m同余。记作a≡
b(mod m)。
- 性 质:反身性、对称性、传递性等。
参考百度百科:
2.
对称性:若a≡b(mod m),则b≡a (mod m);
3.传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m);
4.同余式相加:若a≡b(mod m),c≡d(mod m),则a
c≡b
d(mod m);
5.同余式相乘:若a≡b(mod m),c≡d(mod m),则ac≡bd(mod m)。
证明:
∵a≡b(mod m)∴m|(a-b) 同理m|(b-c),
∴m|[(a-b)+(b-c)]∴m|(a-c).
故a≡c(mod m).
6.
线性运算:如果a ≡ b (mod m),c ≡ d (mod m),那么
(1)a ± c ≡ b ± d (mod m);
(2)a * c ≡ b * d (mod m)。
证明:
(1)∵a≡b(mod m),
∴m|(a-b)
同理 m|(c-d)
∴m|[(a-b)±(c-d)]
∴m|[(a±c)-(b±d)]
∴a ± c ≡ b ± d (mod m)
(2)∵ac-bd=ac-bc+bc-bd=c(a-b)+b(c-d)
又 m|(a-b) , m|(c-d)
∴m|(ac-bd)
∴a * c ≡ b * d (mod m)
10.若
,(i=1,2...n) 则
,其中
表示m
1,m
2,...m
n的
最小公倍数。
同余定理【数论】
标签:div ... 公倍数 c99 class info bcd alt tle
原文地址:https://www.cnblogs.com/donke/p/10306632.html