标签:iostream ber lis code following i++ int style order
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Each input file contains one test case. For each case, the first line contains a positive integer NNN (≤1000\le 1000≤1000). Then NNN distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
10
1 2 3 4 5 6 7 8 9 0
6 3 8 1 5 7 9 0 2 4
思路:
由于要输出的是一个完全二叉树且是二叉搜索树。所以使用顺序表存储,对各个顶点的编号方法是自左到右,自上而下。所以
只需要在建立树以后,遍历数组输出即可,当然使用标准的二叉树层次遍历算法也可以。建立树的方法使用中序遍历,因为二叉搜
索树的中序遍历结果是有序的。
#include<iostream> #include<vector> #include<algorithm> #include<queue> #include<string> #include<map> #include<set> using namespace std; int k=1; void create(int tree[],int root,int n,int a[]) { if(root>n) return; create(tree,2*root,n,a); tree[root]=a[k++]; create(tree,2*root+1,n,a); } void level(int tree[],int n) { queue<int> qu; qu.push(1); cout<<tree[1]; while(!qu.empty()) { int temp=qu.front(); qu.pop(); if(2*temp<=n) { qu.push(2*temp); cout<<" "<<tree[2*temp]; } if(2*temp+1<=n) { qu.push(2*temp+1); cout<<" "<<tree[2*temp+1]; } } } int main() { int n; cin>>n; int a[n+1]; for(int i=1;i<n+1;i++) cin>>a[i]; sort(a+1,a+n+1); int tree[n+1]; create(tree,1,n,a); //level(tree,n); cout<<tree[1]; for(int i=2;i<n+1;i++) cout<<" "<<tree[i]; return 0; }
1064 Complete Binary Search Tree (30 分)完全二叉树
标签:iostream ber lis code following i++ int style order
原文地址:https://www.cnblogs.com/zhanghaijie/p/10308327.html