码迷,mamicode.com
首页 > 其他好文 > 详细

小白学爬虫:迷你爬虫架构(二)

时间:2019-01-23 13:58:53      阅读:186      评论:0      收藏:0      [点我收藏+]

标签:风格   网络爬虫   -o   选择   入队   optparse   mysq   jpg   直接   

摘要:从零开始写爬虫,初学者的速成指南!

介绍

大家好!回顾上一期,我们在介绍了爬虫的基本概念之后,就利用各种工具横冲直撞的完成了一个小爬虫,目的就是猛、糙、快,方便初学者上手,建立信心。对于有一定基础的读者,请不要着急,以后我们会学习主流的开源框架,打造出一个强大专业的爬虫系统!不过在此之前,要继续打好基础,本期我们先介绍爬虫的种类,然后选取最典型的通用网络爬虫,为其设计一个迷你框架。有了自己对框架的思考后,再学习复杂的开源框架就有头绪了。

今天我们会把更多的时间用在思考上,而不是一根筋的coding。用80%的时间思考,20%的时间敲键盘,这样更有利于进步。

技术分享图片
号:923414804群里有志同道合的小伙伴,互帮互助,群里有不错的视频学习教程和PDF!

语言&环境

语言:带足弹药,继续用Python开路!

技术分享图片
 

 

threading:threading库可以在单独的线程中执行任何的在Python中可以调用的对象。Python 2.x中的thread模块已被废弃,用户可以使用threading模块代替。在Python 3中不能再使用thread模块。为了兼容性,Python 3将thread重命名为_thread。

queue:queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

re:Python 自1.5版本起增加了re模块,它提供Perl风格的正则表达式模式。re模块使 Python语言拥有全部的正则表达式功能。

argparse:Python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块。argparse模块的作用是用于解析命令行参数。

configparser:读取配置文件的模块。

爬虫的种类

技术分享图片
 

网络爬虫按照系统结构和实现技术,大致可以分为以下几种类型:通用网络爬虫(General Purpose Web Crawler)、聚焦网络爬虫(Focused Web Crawler)、增量式网络爬虫(Incremental Web Crawler)、深层网络爬虫(Deep Web Crawler)。实际的网络爬虫系统通常是几种爬虫技术相结合实现的。

通用网络爬虫

通用网络爬虫又称全网爬虫(Scalable Web Crawler),爬取对象从一些种子 URL 扩充到整个 Web。主要为门户站点搜索引擎和大型 Web 服务提供商采集数据。

通用网络爬虫的结构大致可以分为页面爬取模块 、页面分析模块、链接过滤模块、页面存储模块、URL 队列、初始 URL 集合几个部分。为提高工作效率,通用网络爬虫会采取一定的爬取策略。 常用的爬取策略有:深度优先策略、广度优先策略。

1) 深度优先策略(DFS):其基本方法是按照深度由低到高的顺序,依次访问下一级网页链接,直到不能再深入为止。

2) 广度优先策略(BFS):此策略按照网页内容目录层次深浅来爬取页面,处于较浅目录层次的页面首先被爬取。 当同一层次中的页面爬取完毕后,爬虫再深入下一层继续爬取。

聚焦网络爬虫

聚焦网络爬虫(Focused Crawler),又称主题网络爬虫(Topical Crawler),是指选择性地爬取那些与预先定义好的主题相关页面的网络爬虫。 和通用网络爬虫相比,聚焦爬虫只需要爬取与主题相关的页面,极大地节省了硬件和网络资源,保存的页面也由于数量少而更新快,还可以很好地满足一些特定人群对特定领域信息的需求。我们之前爬的歌单就属于这一种。

增量式网络爬虫

增量式网络爬虫(Incremental Web Crawler)是 指 对 已 下 载 网 页 采 取 增 量式更新和只爬取新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬取的页面是尽可能新的页面。 和周期性爬取和刷新页面的网络爬虫相比,增量式爬虫只会在需要的时候爬取新产生或发生更新的页面 ,并不重新下载没有发生变化的页面,可有效减少数据下载量,及时更新已爬取的网页,减小时间和空间上的耗费,但是增加了爬取算法的复杂度和实现难度。现在比较火的舆情爬虫一般都是增量式网络爬虫。

深网爬虫

Web 页面按存在方式可以分为表层网页(Surface Web)和深层网页(Deep Web,也称 Invisible Web Pages 或 Hidden Web)。 表层网页是指传统搜索引擎可以索引的页面,以超链接可以到达的静态网页为主构成的 Web 页面。Deep Web 是那些大部分内容不能通过静态链接获取的、隐藏在搜索表单后的,只有用户提交一些关键词才能获得的 Web 页面。例如那些用户注册后内容才可见的网页就属于 Deep Web。

一个迷你框架

下面以比较典型的通用爬虫为例,分析其工程要点,设计并实现一个迷你框架。架构图如下:

技术分享图片
 

代码结构:

技术分享图片
 

config_load.py    配置文件加载

crawl_thread.py    爬取线程

mini_spider.py    主线程

spider.conf    配置文件

url_table.py    url队列、url表

urls.txt    种子url集合

webpage_parse.py    网页分析

webpage_save.py    网页存储

看看配置文件里有什么内容:

spider.conf

技术分享图片
 

Step 1. 采用BFS还是DFS?

理论上,这两个算法都能够在大致相同的时间里爬取整个互联网上的内容。但显然各个网站最重要的网页应该是它的首页。在极端情况下,如果只能下载非常有限的网页,那么应该下载的所有网站的首页,如果把爬虫再扩大些,应该爬取从首页直接链接的网页,因为这些网页是网站设计者自己认为相当重要的网页。在这个前提下,显然BFS明显优于DFS。事实上在搜索引擎的爬虫里,主要采用的就是BFS。我们的框架采取这种策略。

抓取深度可以通过配置文件中的max_depth设置,只要没到达指定深度,程序就会不停的将解析出的url放入队列中:

mini_spider.py

技术分享图片
 

Step 2. 初始URL集合、URL队列

我们来看看通用爬虫如何下载整个互联网。假设从一家门户网站的首页出发,先下载这个网页(深度=0),然后通过分析这个网页,可以找到页面里的所有超链接,也就等于知道了这家门户网站首页所直接连接的全部网页,诸如京东理财、京东白条,京东众筹等(深度=1)。接下来访问、下载并分析京东理财等网页,又能找到其他相连的网页(深度=2)。让计算机不停的做下去,就能下载整个网站。

在这个过程中,我们需要一个“初始URL集合”保存门户的首页,还需要一个“URL队列”保存分析网页得到的超链接。

mini_spider.py

技术分享图片
 

 

url_table.py

技术分享图片
 

Step 3. 记录哪些网页已经下载过的小本本——URL表。

在互联网上,一个网页可能被多个网页中的超链接所指向。这样在遍历互联网这张图的时候,这个网页可能被多次访问到。为了防止一个网页被下载和解析多次,需要一个URL表记录哪些网页已经下载过。再遇到这个网页的时候,我们就可以跳过它。

crawl_thread.py

技术分享图片
 

Step 4. 多个抓取线程

为了提升爬虫性能,需要多个抓取线程,从URL队列获取链接进行处理。多线程并没什么毛病,但Python的多线程可能会引起很多人的质疑,这源于Python设计之初的考虑:GIL。GIL的全称是Global Interpreter Lock(全局解释器锁),某个线程想要执行,必须先拿到GIL,并且在一个Python进程中,GIL只有一个。结果就是Python里一个进程永远只能同时执行一个线程,这就是为什么在多核CPU上,Python的多线程效率并不高。那么我们为什么还要用Python多线程呢?

CPU密集型代码(各种循环处理、编解码等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),Python下的多线程对CPU密集型代码并不友好。

IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。Python的多线程对IO密集型代码比较友好。

所以,对于IO密集的爬虫程序,使用Python多线程是没问题的。

crawl_thread.py

技术分享图片
 

Step 5. 页面分析模块

从网页中解析出URLs或者其他有用的数据。这个是上期重点介绍的,可以参考之前的代码。

Step 6. 页面存储模块

保存页面的模块,目前将文件保存为文件,以后可以扩展出多种存储方式,如mysql,mongodb,hbase等等。

webpage_save.py

技术分享图片
 

写到这里,整个框架已经清晰的呈现在大家眼前了,千万不要小看它,不管多么复杂的框架都是在这些基本要素上扩展出来的。

下一步

基础知识的学习暂时告一段落,希望能够帮助大家打下一定的基础。下期开始为大家介绍强大成熟的爬虫框架Scrapy,它提供了很多强大的特性来使得爬取更为简单高效,更多精彩,敬请期待!

小白学爬虫:迷你爬虫架构(二)

标签:风格   网络爬虫   -o   选择   入队   optparse   mysq   jpg   直接   

原文地址:https://www.cnblogs.com/paisenpython/p/10308373.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!