我们知道,在第一次海量数据批量入库时,我们会选择使用BulkLoad的方式。
简介一下BulkLoad原理方式:(1)通过MapReduce的方式,在Map或者Reduce端将输出格式化为HBase的底层存储文件HFile。(2)调用BulkLoad将第一个Job生成的HFile导入到对应的HBase表中。
ps:请注意(1)HFile方式是所有的加载方案里面是最快的,前提是:数据必须第一个导入,表示空的!如果表中已经有数据,HFile再次导入的时候,HBase的表会触发split分割操作。(2)最终输出结果,无论是Map还是Reduce,输出建议只使用<ImmutableBytesWritable, KeyValue>。
现在我们开始正题:BulkLoad固然是写入HBase最快的方式,但是,如果我们在做业务分析的时候,而数据又已经在HBase的时候,我们采用普通的针对HBase的方式,如下demo所示:
import com.yeepay.bigdata.bulkload.TableCreator; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.mapreduce.Job; import org.apache.log4j.Logger; import java.io.IOException; public class HBaseMapReduceDemo { static Logger LOG = Logger.getLogger(HBaseMapReduceDemo.class); static class Mapper1 extends TableMapper<ImmutableBytesWritable, ImmutableBytesWritable> { @Override public void map(ImmutableBytesWritable row, Result values, Context context) throws IOException { try { // context.write(key, value); } catch (Exception e) { LOG.error(e); } } } public static class Reducer1 extends TableReducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable> { public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException { try { Put put = new Put(key.get()); // put.add(); context.write(key, put); } catch (Exception e) { LOG.error(e); return ; } // catch } // reduce function } // reduce class public static void main(String[] args) throws Exception { HBaseConfiguration conf = new HBaseConfiguration(); conf.set("hbase.zookeeper.quorum", "yp-name02,yp-name01,yp-data01"); conf.set("hbase.zookeeper.property.clientPort", "2181"); // conf.set(TableInputFormat.INPUT_TABLE,"access_logs"); Job job = new Job(conf, "HBaseMapReduceDemo"); job.setJarByClass(HBaseMapReduceDemo.class); // job.setNumReduceTasks(2); Scan scan = new Scan(); scan.setCaching(2500); scan.setCacheBlocks(false); TableMapReduceUtil.initTableMapperJob("srcHBaseTableName", scan, Mapper1.class, ImmutableBytesWritable.class, ImmutableBytesWritable.class, job); // TableCreator.createTable(20, true, "OP_SUM"); TableMapReduceUtil.initTableReducerJob("destHBasetableName", Reducer1.class, job); System.exit(job.waitForCompletion(true) ? 0 : 1); } }这个时候在对海量数据的插入过程中,会放生Spliter,写入速度非常的,及其的慢。但是此种情况适合,对已有的HBase表进行修改时候的使用。
针对如下情况HBase -> MapReduce 分析 -> 新表,我们采用 (HBase -> MapReduce 分析 -> bulkload -> 新表)方式。
demo如下:
Mapper如下:
public class MyReducer extends Reducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable, KeyValue> { static Logger LOG = Logger.getLogger(MyReducer.class); public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException { try { context.write(key, kv); } catch (Exception e) { LOG.error(e); return; } // catch } // reduce function }
Reducer如下:
public class MyReducer extends Reducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable, KeyValue> { static Logger LOG = Logger.getLogger(MyReducer.class); public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException { try { context.write(key, kv); } catch (Exception e) { LOG.error(e); return; } // catch } // reduce function }
public abstract class JobBulkLoad { public void run(String[] args) throws Exception { try { if (args.length < 1) { System.err.println("please set input dir"); System.exit(-1); return; } String srcTableName = args[0]; String destTableName = args[1]; TableCreator.createTable(20, true, destTableName); // 设置 HBase 参数 HBaseConfiguration conf = new HBaseConfiguration(); conf.set("hbase.zookeeper.quorum", "yp-name02,yp-name01,yp-data01"); // conf.set("hbase.zookeeper.quorum", "nn01, nn02, dn01"); conf.set("hbase.zookeeper.property.clientPort", "2181"); // 设置 Job 参数 Job job = new Job(conf, "hbase2hbase-bulkload"); job.setJarByClass(JobBulkLoad.class); HTable htable = new HTable(conf, destTableName); // 根据region的数量来决定reduce的数量以及每个reduce覆盖的rowkey范围 // ---------------------------------------------------------------------------------------- Scan scan = new Scan(); scan.setCaching(2500); scan.setCacheBlocks(false); TableMapReduceUtil.initTableMapperJob(srcTableName, scan, MyMapper.class, ImmutableBytesWritable.class, ImmutableBytesWritable.class, job); // TableMapReduceUtil.initTableReducerJob(destTableName, Common_Reducer.class, job); job.setReducerClass(MyReducer.class); Date now = new Date(); Path output = new Path("/output/" + destTableName + "/" + now.getTime()); System.out.println("/output/" + destTableName + "/" + now.getTime()); HFileOutputFormat.configureIncrementalLoad(job, htable); FileOutputFormat.setOutputPath(job, output); HFileOutputFormat.configureIncrementalLoad(job, htable); job.waitForCompletion(true); //----- 执行BulkLoad ------------------------------------------------------------------------------- HdfsUtil.chmod(conf, output.toString()); HdfsUtil.chmod(conf, output + "/" + YeepayConstant.COMMON_FAMILY); htable = new HTable(conf, destTableName); new LoadIncrementalHFiles(conf).doBulkLoad(output, htable); System.out.println("HFile data load success!"); } catch (Throwable t) { throw new RuntimeException(t); } } }
对于HBase的MapReduce性能提升方案之BulkLoad
原文地址:http://blog.csdn.net/zhuyu_deng/article/details/40151991