码迷,mamicode.com
首页 > 其他好文 > 详细

luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演

时间:2019-01-25 20:25:14      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:+=   names   res   rac   space   day   简单的   wap   nal   

link

ms是莫比乌斯反演里最水的题。。。

题意:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。

多组询问, T<=50000,d,a,b<=50000

稍微推下shizi

\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\)

\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}[\gcd(i,j)=1]\)

\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\sum_{d|i,d|j}\mu(d)\)

\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\sum_{d|i,d|j}\mu(d)\)

\(=\sum_{d=1}^n\mu(d)\lfloor\frac a{kd}\rfloor\lfloor\frac b{kd}\rfloor\)

连枚举倍数都不用。。。直接打个数论分块就行了。。。复杂度\(O(T\sqrt n)\)

#include <cstdio>
#include <functional>
using namespace std;


bool visit[50010];
int prime[50010], mu[50010], tot, fuck = 50000;

int main()
{
    mu[1] = 1;
    for (int i = 2; i <= fuck; i++)
    {
        if (visit[i] == false) prime[++tot] = i, mu[i] = -1;
        for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
        {
            visit[i * prime[j]] = true;
            if (i % prime[j] == 0) break;
            mu[i * prime[j]] = -mu[i];
        }
        mu[i] += mu[i - 1];
    }
    int t;
    scanf("%d", &t);
    while (t --> 0)
    {
        int n, m, k;
        scanf("%d%d%d", &n, &m, &k);
        n /= k, m /= k;
        int res = 0;
        if (n > m) swap(n, m);
        for (int i = 1, j; i <= n; i = j + 1)
        {
            j = min(n / (n / i), m / (m / i));
            res += (mu[j] - mu[i - 1]) * (n / i) * (m / i);
        }
        printf("%d\n", res);
    }
    return 0;
}

40行一遍AC

于NOIWC2019 Day2晚试机

日推里出现的题,竟然挺水

NOI Linux真TM难用,累死我了

luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演

标签:+=   names   res   rac   space   day   简单的   wap   nal   

原文地址:https://www.cnblogs.com/oier/p/10321429.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!