标签:方差 sqrt 衡量 ati 计算 形式 lock block play
参考:《深度学习500问》
期望
?在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。它反映随机变量平均取值的大小。
注意:
- 函数的期望不等于期望的函数,即\(E(f(x))=f(E(x))\)
- 一般情况下,乘积的期望不等于期望的乘积。
- 如果\(X\)和\(Y\)相互独立,则\(E(xy)=E(x)E(y)?\)。
方差
?概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差是一种特殊的期望。定义为:
\[ Var(x) = E((x-E(x))^2) \]
方差性质:
1)\(Var(x) = E(x^2) -E(x)^2\)
2)常数的方差为0;
3)方差不满足线性性质;
4)如果\(X\)和\(Y\)相互独立, \(Var(ax+by)=a^2Var(x)+b^2Var(y)\)
协方差
?协方差是衡量两个变量线性相关性强度及变量尺度。 两个随机变量的协方差定义为:
\[ Cov(x,y)=E((x-E(x))(y-E(y))) \]
?方差是一种特殊的协方差。当\(X=Y\)时,\(Cov(x,y)=Var(x)=Var(y)\)。
协方差性质:
1)独立变量的协方差为0。
2)协方差计算公式:
\[ Cov(\sum_{i=1}^{m}{a_ix_i}, \sum_{j=1}^{m}{b_jy_j}) = \sum_{i=1}^{m} \sum_{j=1}^{m}{a_ib_jCov(x_iy_i)} \]
3)特殊情况:
\[ Cov(a+bx, c+dy) = bdCov(x, y) \]
相关系数
?相关系数是研究变量之间线性相关程度的量。两个随机变量的相关系数定义为:
\[ Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}} \]
相关系数的性质:
1)有界性。相关系数的取值范围是 ,可以看成无量纲的协方差。
2)值越接近1,说明两个变量正相关性(线性)越强。越接近-1,说明负相关性越强,当为0时,表示两个变量没有相关性。
Mathematics Base - 期望、方差、协方差、相关系数总结
标签:方差 sqrt 衡量 ati 计算 形式 lock block play
原文地址:https://www.cnblogs.com/zdfffg/p/10322341.html