标签:生成树 保存 函数 精度 区间查询 最大的 algo 筛法 new
【零. 序言】
------头文件
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
------读入优化
void reads(int &x){
int fx=1;x=0;char ch=getchar();
while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)fx=-1;ch=getchar();}
while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
x=x*fx; //正负号
}
------并查集
int find_fa(int x){ return fa[x]=(fa[x]==x)?x:find_fa(fa[x]); }
------建边
struct node{ int nextt,ver,w; }e[M*2]; int tot=0,head[N];
void add(int x,int y,int z){ e[++tot].nextt=head[x],e[tot].ver=y,e[tot].w=z,head[x]=tot; }
------dis函数
double dis(int i,int j){ /*注意结构体的使用*/
return sqrt((double)(S[i].x-S[j].x)*(S[i].x-S[j].x)
+(double)(S[i].y-S[j].y)*(S[i].y-S[j].y));
}
------快速幂
ll power(ll a,ll b,ll mod){
ll anss=1; //注意初始化为1
while(b>0){ //求a的b次方%mod
if(b&1) anss=anss*a%mod;
a=a*a%mod; b>>=1;
} return anss;
}
------埃式筛法
int vis[N],primes[N],cnt=0;
void init(int x){
for(int i=2;i<=x;i++)
if(!vis[i]){
primes[cnt++]=i;
for(int j=i+i;j<=x;j+=i)
vis[j]=1;
}
}
------质因数分解
void init(int x){ int cnt=0;
for(int i=2;i*i<=x;i++)
while(x%i==0) primes[++cnt]=i,x/=i;
if(x>1) primes[++cnt]=x;
}
------因数分解
int factor[2519],cnt=0;
for(int i=1;i*i<=n;i++){
if(n%i==0){
factor[++cnt]=i;
if(i!=n/i) factor[++cnt]=n/i;
}
}
------乘法逆元
ll inv1(ll a,ll mod){ //扩展欧几里得求逆元
ll x,y; ll d=exgcd(a,mod,x,y);
if(d==1) return (x%mod+mod)%mod; return -1; }
ll inv2(ll a,ll mod){ return ksm(a,mod-2,mod); } //费马小定理
void inv3(ll mod){ inv[1]=1; //线性递推求逆元
for(int i=2;i<=mod-1;i++) //求1~n的逆元
inv[i]=(mod-mod/i)*inv[mod%i]%mod,cout<<inv[i]<<" ";
}
------Dijkstra
priority_queue < pair<int,int> > q;
void dijkstra(int s){
for(int i=1;i<=n;i++) dist[i]=(int)1e9;
dist[s]=0,q.push(make_pair(0,s)); //dist的相反数和出发点的编号
while(q.size()!=0){ //while(!q.empty())
int x=q.top().second; q.pop();
if(vis[x]!=0) continue; vis[x]=1;
for(int i=head[x];i;i=e[i].nextt){
if(dist[e[i].ver]>dist[x]+e[i].w){
dist[e[i].ver]=dist[x]+e[i].w;
q.push(make_pair(-dist[e[i].ver],e[i].ver));
}
}
}
}
------SPFA
void spfa(int s){
queue<int>q; //普通队列(也可以写成循环队列)
for(int i=1;i<=n;i++) dist[i]=1e9;
q.push(s); vis[s]=true; dist[s]=0;
while(!q.empty()){
int u=q.front(); q.pop(); vis[u]=false;
for(int i=head[u];i;i=e[i].nextt)
if(dist[u]+e[i].w<dist[e[i].ver]){
dist[e[i].ver]=dist[u]+e[i].w;
if(!vis[e[i].ver]) //SPFA和dij的区别
vis[e[i].ver]=true,q.push(e[i].ver);
}
}
}
------Prim
int a[5019][5019],dist[5019],n,w,ans=0;
//↑↑↑把二维的距离数组a、在每次循环中、判断转为一维的距离数组dist
bool vis[5019]; //vis数组标记点是否访问过
void prim(){
memset(dist,0x3f,sizeof(dist)); //0x3f=1061109567
memset(vis,0,sizeof(vis)); dist[1]=0; //注意设置起点
for(int i=1;i<n;i++){ //注意:树只有n-1条边
int x=0; for(int j=1;j<=n;j++)
if(!vis[j]&&(x==0||dist[j]<dist[x])) x=j;
vis[x]=1; for(int y=1;y<=n;y++)
if(!vis[y]) dist[y]=min(dist[y],a[x][y]);
} //每次寻找当前状态下、到达任意未访问点需要的最短边,并更新
}
------LCA
void pre_dfs(int u,int fa_){
for(int i=0;i<=19;i++) f[u][i+1]=f[f[u][i]][i],
w[u][i+1]=min(w[u][i],w[f[u][i]][i]);
//↑↑维护lca路径上的最小值,注意w数组不需要初始化
for(int i=head[u];i;i=e[i].nextt){
int v=e[i].ver; //找到下一条相连的边
if(v==fa_) continue;
dep[v]=dep[u]+1; //深度
dist[v]=dist[u]+e[i].w; //距离
f[v][0]=u,w[v][0]=e[i].w,pre_dfs(v,u);
}
}
int lca(int x,int y){ //找lca的主程序
int anss=(int)1e9; //找到lca路径上的最短边
if(dep[x]<dep[y]) swap(x,y); //保证dep[x]>dep[y]
for(int i=20;i>=0;i--){ //注意:这里的20和上面的19都是log2n的近似取值
if(dep[f[x][i]]>=dep[y]) anss=min(anss,w[x][i]),x=f[x][i];
//↑↑↑i的2^k辈祖先的结点仍比y深,令x=f[x,i],继续向上跳
if(x==y) return anss; //若x=y,则已经找到了lca
}
for(int i=20;i>=0;i--) //↓↓↓未找到lca时的倍增跳法
if(f[x][i]!=f[y][i]) //更新次路径上的最短边,并继续向上跳
anss=min(anss,min(w[x][i],w[y][i])),x=f[x][i],y=f[y][i];
lca=f[x][0]; //如果只需要找lca,直接返回f[x][0]即可
return anss=min(anss,min(w[x][0],w[y][0])); //路径上的最小边
}
------trie树
bool tail[SIZE]; //标记串尾元素
int trie[SIZE][26],tot=1; //SIZE:字符串最大长度(层数)
//tot为节点编号,用它可以在trie数组中表示某层的某字母是否存在
void insert(char* ss){ //插入一个字符串
int len=strlen(ss),p=1; //p初始化为根节点1
for(int k=0;k<len;k++){
int ch=ss[k]-‘a‘; //小写字符组成串的某个字符,变成数字
if(trie[p][ch]==0) trie[p][ch]=++tot; //trie存编号tot
//↑↑↑不存在此层的这个字符,新建结点,转移边
p=trie[p][ch]; //指针移动,连接下一个位置
} tail[p]=true; //s中字符扫描完毕,tail标记字符串的末位字符(的编号p)
}
bool searchs(char* ss){ //检索字符串是否存在
int len=strlen(ss),p=1; //p初始化为根节点
for(int k=0;k<len;k++){
p=trie[p][ss[k]-‘a‘]; //寻找下一处字符
if(p==0) return false; //某层字符没有编号,不存在,即串也不存在
} return tail[p]; //判断最后一个字符所在的位置是否是某单词的末尾
}
------KMP匹配
void pre(){ //【预处理nextt[i]】
nextt[1]=0; int j=0; //j指针初始化为0
for(int i=1;i<m;i++){ //a数组自我匹配,从i+1=2与1比较开始
while(j>0&&a[i+1]!=a[j+1]) j=nextt[j];
//↑自身无法继续匹配且j还没减到0,考虑返回匹配的剩余状态
if(a[i+1]==a[j+1]) j++; //这一位匹配成功
nextt[i+1]=j; //记录这一位向前的最长匹配
}
}
void kmp(){ //在b串中寻找a串出现的位置
int ans=0,j=0;
for(int i=0;i<n;i++){ //扫描b,寻找a的匹配
while(b[i+1]!=a[j+1]&&j>0) j=nextt[j];
//↑不能继续匹配且j还没减到0(之前的匹配有剩余状态)
if(b[i+1]==a[j+1]) j++; //匹配加长,j++
if(j==m){ //【一定要把这个判断写在j++的后面!】
printf("%d\n",i+1-m+1); //子串a的起点在母串b中的位置
j=nextt[j]; //继续寻找匹配
} //【↑↑巧妙↑↑这里不用返回0,只用返回上一匹配值】
} //注意:如果询问串的不重叠出现次数,则j必须变成0
}
------高精度
add:将两个高精度加数倒序,每次相加并%10,判断进位和前导0,答案倒序。
div:倒序,每次相减(-owe)、并判断这一位的owe,判断前导0、注意答案为0的情况,答案倒序。
mul:高精*单精,倒序,直接*该数,处理进位,答案倒序;高精*高精:
len=len1+len2; //初始化答案的总长度
for(i=0;i<len1;i++)
for(j=0;j<len2;j++) //↓b,c数组已经倒序
a_int[i+j]+=b_int[i]*c_int[j];
for(i=0;i<len;i++) if(a_int[i]>9)
a_int[i+1]+=a_int[i]/10,a_int[i]=a_int[i]%10;
while(a_int[len-1]==0) len--; //---再将a数组倒序
【一. 搜索】
------dfs
(1)dfs常见思路
(2)树上dfs
------bfs
------二分
(1)二分常见思路
(2)整数二分、实数二分
(3)二分图染色(判定)
(4)二分图匹配
------贪心
------归并排序
(1)归并排序-逆序对模板
(2)逆序对个数为k的全排列数量
(3)归并排序-平面最近点对
------离散化
【二. 字符串】
------字符串哈希
------KMP模式匹配
------Trie字典树
------AC自动机
------Manacher算法
【三. 图论】
------最小生成树
<1> Prim算法
<2> Kruskal算法
------最短路
<1> Floyd
<2> Dijkstra
<3> SPFA
<4> 统计路径条数
<5> 最短路径问题拓展
------差分约束
------强连通分量
------拓扑排序
------LCA
【四. 数据结构】
------树状数组
------线段树
------分块
【五. 动态规划】
------线性DP
------背包DP
------区间DP
------环形DP
------树形DP
------数位DP
------状压DP
------单调队列优化DP
------斜率优化DP
【六. 数论】
<1> 取整除法求和
<2> N的正约数集合
<3> 最大公约数GCD
<4> 求解不定方程---EXGCD
<5> 埃式筛质数
<6> 分解质因数
<7> 快速幂
<8> 乘法逆元
<9> 组合数
<10> Lucas定理
<11> Nim游戏
【一. 搜索】
------dfs
(1)dfs常见思路
1.确定dfs的边界(或剪枝) 2.记忆化搜索(或剪枝)
3.枚举方向(判断超界) 4.回溯(所有状态完全回溯)
vis[xx][yy]=true; dfs(xx,yy,...); vis[xx][yy]=false;
(2)树上dfs
------可用于lca的pre_dfs
void pre_dfs(int u,int fa_){
for(int i=head[u];i;i=e[i].nextt){
int v=e[i].ver; //找到下一条相连的边
if(v==fa_) continue;
dep[v]=dep[u]+1; //深度
dist[v]=dist[u]+e[i].w; //距离
fa[v]=u; pre_dfs(v,u); //记录father,递归
}
}
------bfs
1.起点入队,并标记访问(可能不止一个) 2.队首元素向外扩展:head++ 。
3.枚举方向,判断超界及可行性,标记访问,答案累加,节点入队:tail++ 。
void bfs(int sx,int sy){ //BFS确定连通块
node now1; now1.x=sx,now1.y=sy,q.push(now1);
vis[sx][sy]=1,flag[sx][sy]=tot,num[tot]++;
maps[tot][num[tot]]=now1; //记录每个连通块中每个点的坐标
while(!q.empty()){ //进行BFS
node now=q.front(),now1;q.pop();
for(int i=0;i<4;i++){ //上、下、左、右
int xx=now.x+dx[i],yy=now.y+dy[i];
if(!in_(xx,yy)||vis[xx][yy]||ss[xx][yy]!=‘X‘) continue;
now1.x=xx,now1.y=yy,q.push(now1),vis[xx][yy]=1,flag[xx][yy]=tot;
num[tot]++,maps[tot][num[tot]]=now1; //进队并记录信息
}
}
} ---------洛谷【p3070】岛游记
------二分
(1)二分常见思路
1.用于最小化最大值/最大化最小值。 2.设定l、r、mid,进行二分。
3.设置checks函数,判断是否可行。 4.更新ans,缩小区间l、r。
(2)整数二分、实数二分
while(l<=r){ int mid=(l+r)>>1; if(check(mid)) ans=mid,r=mid-1; else l=mid+1; }
while(r-l>1e-8){ mid=(l+r)/2.0; if(checks(mid)) l=mid; else r=mid; }
(3)二分图染色(判定)
------------------------------详细的分析看 这里
bool dfs(int v,int c){
color[v]=c; //把该点染成颜色c(1或-1)
for(int i=0;i<G[v].size();i++){
if(color[G[v][i]]==c) return false; //当前点与相邻点同色
if(color[G[v][i]]==0&&!dfs(G[v][i],-c))
return false; //如果当前点的邻点还没被染色,就染成-c
} return true; //连通的点全部完成染色
}
void solve(){
for(int i=0;i<V;i++)
if(color[i]==0) if(!dfs(i,1))
{ cout<<"no"<<endl; return; }
cout<<"yes"<<endl;
}
(4)二分图匹配
<1>最大匹配
匹配:“任意两条边没有公共端点”的边的集合。
最大匹配:边数最多的“匹配”;完美匹配:两侧节点一一对应的匹配。
最大点独立集:两边点数相同时,左边节点的个数n-最大匹配边数。
main函数中的循环(每次清空vis数组):
for(int i=1;i<=n;i++) //加入左侧每个节点,判断是否存在增广路
memset(vis,false,sizeof(vis)),ans+=dfs(i); //计算最大匹配边数
dfs寻找最大匹配(bool类型,维护match数组):
bool dfs(int x){
for(int i=head[x];i;i=e[i].nextt) //寻找连边
if(!vis[e[i].ver]){ //当前右节点在新左节点的匹配中未访问过
vis[e[i].ver]=true; //标记这个未访问过的右边点
if(!match[e[i].ver]||dfs(match[e[i].ver])) //如果空闲 或 原匹配的点可以让位
{ match[e[i].ver]=x; return true; } //左节点x可以占用这个右节点y
} return false; //无法找到匹配,即该情况下不会出现增广路
}
<2>最小链覆盖与反链
反链:一个点集,其中任意两个点都不在同一条链上。
覆盖:所有点都能分布在链上时,需要的最小链数。
【最小链覆盖数 = 最长(反链)长度】【最长链长度 = 最小(反链)覆盖数】
-------> 所以求反链可以转化为:求 最小链覆盖数 或 最长链长度。
【求最小链覆盖(最长反链)】二分图求最大匹配。
相当于把每个点拆成两个点,求最大点独立集的大小。
两边点数相同时,最大点独立集大小=左边点数n-最大匹配数。
【输出最小链覆盖的方案】整体思路是考虑合并原来拆开的两个点。
用vis数组来标记被右边的某个点匹配上了的左边点。
那么在左边却没有匹配上的点,肯定是某条链的端点(这个点最多只有一条边在链上)。
dfs每个在左边并且没有匹配上的点 i,找它在右边的对应端点 i(合并拆成的两个点)。
寻找右边的 i 有没有匹配(找链的连向...),dfs,直到右边的某个 x 没有匹配,
那么就说明到了此链的另一个端点。过程中输出选点情况即可。
void dfs2(int now){ //最小链覆盖的方案
if(!match[now]){ printf("%d ",now); return; }
dfs2(match[now]); printf("%d ",now); //↓↓即最小链覆盖的方案
} //相当于将一开始分开的两个点合并起来,按照匹配路径,寻找每条链的链长
------贪心
(1)平均数:均分纸牌问题...
(2)中位数:货仓选址问题...
变式:二维转化为两个一维考虑,分别取中位数求值。
动态中位数:对顶堆。判断中位数区间:+1/-1维护前缀和。
(3)排序:最小转化次数...
方法:逆序对 or 每次把最大的放在最后面 or 倒序找逆序个数。
(4)拆分法:把一种物品拆成多个单个物品
例题:【p3049】园林绿化。转化为01背包问题。
(5)区间问题:区间覆盖,区间选点...
方法:维护左右端点,进行排序等操作。
区间类型不同时(如有电压、灯管...),常把n+m个区间一起排序。
------归并排序
(1)归并排序-逆序对模板
int a[maxn],ranks[maxn],ans=0; //ans记录逆序对的数量
void Merge(int l,int r){ //归并排序
if(l==r) return;
int mid=(l+r)/2; //分治思想
Merge(l,mid); Merge(mid+1,r); //递归实现
int i=l,j=mid+1,k=l;
while(i<=mid&&j<=r){
if(a[i]>a[j]){
ranks[k++]=a[j++];
ans+=mid-i+1; //逆序对的个数
} else ranks[k++]=a[i++];
} while(i<=mid) ranks[k++]=a[i++];
while(j<=r) ranks[k++]=a[j++];
for(int i=l;i<=r;i++) a[i]=ranks[i]; //排序数组传入原a数组中
}
(2)逆序对个数为k的全排列数量
DP转移:f[i][j]为前i个数字(即1~i)构成逆序对数为j的方案总数。
全排列逆序对结论:在第k个位置放第i个数,单步得到的逆序对数为 max(0,i-k)。
判断i的插入位置,得到转移方程:f[i][j]=∑(f[i-1][j-i+1...j-1])。
f[i-1][]的求和可以用前缀和数组维护,同时第一维可以省略(且不需要倒序)。
(3)归并排序-平面最近点对
思路:先按x坐标排序,再用分治法处理y。
double merge(int l,int r){
double min_dist=INF;
if(l==r) return min_dist;
if(l+1==r) return dist(l,r);
int mid=(l+r)>>1; //分治
double d1=merge(l,mid),d2=merge(mid+1,r);
min_dist=min(d1,d2); int i,j,k=0;
for(i=l;i<=r;i++)
if(fabs(S[mid].x-S[i].x)<=min_dist)
ranks[k++]=i;
sort(ranks,ranks+k,cmps);
for(i=0;i<k;i++) //注意这里使用的是0G
for(j=i+1;j<k&&S[ranks[j]].y-S[ranks[i]].y<min_dist;j++)
min_dist=min(min_dist,dist(ranks[i],ranks[j]));
return min_dist; //平面最近点对
}
------离散化
(1)使用 lower_bound,排序+去重
int kt[N],a[N]; //辅助数组kt[]
int main(){
for(int i=1;i<=n;i++) cin>>a[i],kt[i]=a[i];
sort(kt+1,kt+n+1); //辅助数组进行排序
m=unique(kt+1,kt+n+1)-kt-1; //注意要-kt-1
for(int i=1;i<=n;i++) //↓↓第一个大于等于a[i]的位置
a[i]=lower_bound(kt+1,kt+m+1,a[i])-kt; //注意只用-kt
}
(2)使用 结构体,可以 记录原编号
struct node{ int x,id; }a[N]; int n,rank[N];
bool cmp(node aa,node bb){ return aa.x<bb.x; }
int main(){ cin>>n;
for(int i=1;i<=n;i++) cin>>a[i].v,a[i].id=i;
sort(a+1,a+n+1,cmp); //↓↓得到原顺序下每个数的排名
for(int i=1;i<=n;i++) rank[a[i].id]=i;
}
【二. 字符串】
------字符串哈希
H(C)=(c1*b^(m-1)+c2*b^(m-2)+....+cm*b^0) mod h。
b为基数,H(C)的处理相当于把字符串看成b进制数。
预处理的过程通过递归计算:H(C,k)=H(C,k-1)*b+ck。
判断某段字符与另一匹配串是否匹配,即判断:
(↑↑某段字符:从位置k+1开始的长度为n的子串C’=ck+1 ck+2 .... ck+n;)
H(C’) =H(C,k+n)-H(C,k)*b^n 与 H(S) 的关系。
判断回文:正反hash。反hash要倒序预处理,注意左右边界。
ull自然溢出:powers数组设成ull类型,超出ull时会自然溢出(省时)。
哈希散列表:取余法,用链表记录每个hash值所在的位置(即对应的余数)。
------KMP模式匹配
题目:给你两个字符串,寻找其中一个字符串是否包含另一个字符串。
<1>原短字符串a的【自我匹配】
nextt[i]:原字符串的 最长前缀 和 (以i结尾的)最长后缀 相同的长度。
void pre(){ //【预处理nextt[i]】
nextt[1]=0; int j=0; //j指针初始化为0
for(int i=1;i<m;i++){ //a数组自我匹配,从i+1=2与1比较开始
while(j>0&&a[i+1]!=a[j+1]) j=nextt[j];
//↑自身无法继续匹配且j还没减到0,考虑返回匹配的剩余状态
if(a[i+1]==a[j+1]) j++; //这一位匹配成功
nextt[i+1]=j; //记录这一位向前的最长匹配
}
}
<2>【原串a与询问串b】的匹配
在b串中寻找a串出现的位置:
void kmp(){ //在b串中寻找a串出现的位置
int ans=0,j=0;
for(int i=0;i<n;i++){ //扫描b,寻找a的匹配
while(b[i+1]!=a[j+1]&&j>0) j=nextt[j];
//↑不能继续匹配且j还没减到0(之前的匹配有剩余状态)
if(b[i+1]==a[j+1]) j++; //匹配加长,j++
if(j==m){ //【一定要把这个判断写在j++的后面!】
printf("%d\n",i+1-m+1); //子串a的起点在母串b中的位置
j=nextt[j]; //继续寻找匹配
} //【↑↑巧妙↑↑这里不用返回0,只用返回上一匹配值】
} //注意:如果询问串的不重叠出现次数,则j必须变成0
}
求b串与a串匹配的最大长度:
int kmp(){ int j=0; //求f[i]数组
for(int i=0;i<n;i++){ //扫描长串b
while(( j==m || b[i+1]!=a[j+1] ) && j>0) j=nextt[j];
//↑不能继续匹配且j还没减到0(之前的匹配有剩余状态)或 a在b中找到完全匹配
if(b[i+1]==a[j+1]) j++; //匹配加长,j++
f[i+1]=j; //此位置及之前与原串组成的最长匹配
// (if(f[i+1]==m),此时a在b中找到完全匹配)
}
【拓展】循环同构串的最小表示法 (kmp思想)
------Trie字典树
Trie树:一种用于实现字符串快速检索的多叉树结构。
bool tail[SIZE]; //标记串尾元素
int trie[SIZE][26],tot=1; //SIZE:字符串最大长度(层数)
//tot为节点编号,用它可以在trie数组中表示某层的某字母是否存在
void insert(char* ss){ //插入一个字符串
int len=strlen(ss),p=1; //p初始化为根节点1
for(int k=0;k<len;k++){
int ch=ss[k]-‘a‘; //小写字符组成串的某个字符,变成数字
if(trie[p][ch]==0) trie[p][ch]=++tot; //trie存编号tot
//↑↑↑不存在此层的这个字符,新建结点,转移边
p=trie[p][ch]; //指针移动,连接下一个位置
} tail[p]=true; //s中字符扫描完毕,tail标记字符串的末位字符(的编号p)
}
bool searchs(char* ss){ //检索字符串是否存在
int len=strlen(ss),p=1; //p初始化为根节点
for(int k=0;k<len;k++){
p=trie[p][ss[k]-‘a‘]; //寻找下一处字符
if(p==0) return false; //某层字符没有编号,不存在,即串也不存在
} return tail[p]; //判断最后一个字符所在的位置是否是某单词的末尾
}
难题:【bzoj4260】按位异或(trie树维护异或前缀和)
难题:【p3065】第一(拓扑排序+trie树)
------AC自动机
思想是kmp+trie树,具体的我还不会...
------Manacher算法
void Manacher(){ //求最长回文子串的长度
t[0]=‘$‘,t[1]=‘#‘; //【1】加入‘#‘
for(int i=0;i<n;i++) t[i*2+2]=ss[i],t[i*2+3]=‘#‘;
n=n*2+2,t[n]=‘%‘; //更新字符串长度
int last_max=0,last_id=0; //【2】求出p[]数组
for(int i=1;i<n;i++){ //↓↓继承i关于id的对称点j的最长匹配长度
p[i]=(last_max>i)?min(p[2*last_id-i],last_max-i):1;
while(t[i+p[i]]==t[i-p[i]]) p[i]++; //然后p[i]自身进行拓展
if(last_max<i+p[i]) last_max=i+p[i],last_id=i; //更新mx和id
ans_Len=max(ans_Len,p[i]-1); //最长回文子串的长度
}
}
【三. 图论】
------最小生成树
<1> Prim算法
int a[5019][5019],dist[5019],n,w,ans=0;
//↑↑↑把二维的距离数组a、在每次循环中、判断转为一维的距离数组dist
bool vis[5019]; //vis数组标记点是否访问过
void prim(){
memset(dist,0x3f,sizeof(dist)); //0x3f=1061109567
memset(vis,0,sizeof(vis)); dist[1]=0; //注意设置起点
for(int i=1;i<n;i++){ //注意:树只有n-1条边
int x=0; for(int j=1;j<=n;j++)
if(!vis[j]&&(x==0||dist[j]<dist[x])) x=j;
vis[x]=1; for(int y=1;y<=n;y++)
if(!vis[y]) dist[y]=min(dist[y],a[x][y]);
} //每次寻找当前状态下、到达任意未访问点需要的最短边,并更新
}
<2> Kruskal算法
for(int i=1;i<=m;i++) //存边
reads(e[i].x),reads(e[i].y),reads(e[i].w);
for(int i=1;i<=n;i++) fa[i]=i; //初始化
sort(e+1,e+m+1,cmp); //边权从小到大排序
for(int i=1;i<=m;i++){
int fx=find_fa(e[i].x),fy=find_fa(e[i].y);
if(fx!=fy) fa[fx]=fy,ans+=e[i].w; //ans=min/max(ans,e[i].w);
} //也可以统计已加入的边数,如果达到n-1条边就退出
难题:【CF76A】国王的礼物(二维+思维+增量最小生成树)
------最短路
<1> Floyd
用途:推导关系、传递闭包。
for(int k=1;k<=n;k++) //过渡层一定要放在最外面
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
//d[i][j]|=d[i][k]&d[k][j];(传递闭包)
<2> Dijkstra
用途:最短路的快速算法(优先队列优化)。
priority_queue < pair<int,int> > q;
void dijkstra(int s){
for(int i=1;i<=n;i++) dist[i]=(int)1e9;
dist[s]=0,q.push(make_pair(0,s)); //dist的相反数和出发点的编号
while(q.size()!=0){ //while(!q.empty())
int x=q.top().second; q.pop();
if(vis[x]!=0) continue; vis[x]=1;
for(int i=head[x];i;i=e[i].nextt){
if(dist[e[i].ver]>dist[x]+e[i].w){
dist[e[i].ver]=dist[x]+e[i].w;
q.push(make_pair(-dist[e[i].ver],e[i].ver));
}
}
}
}
<3> SPFA
用途:判负环,差分约束(队列)。
void spfa(int s){
queue<int>q; //普通队列(也可以写成循环队列)
for(int i=1;i<=n;i++) dist[i]=1e9;
q.push(s); vis[s]=true; dist[s]=0;
while(!q.empty()){
int u=q.front(); q.pop(); vis[u]=false;
for(int i=head[u];i;i=e[i].nextt)
if(dist[u]+e[i].w<dist[e[i].ver]){
dist[e[i].ver]=dist[u]+e[i].w;
if(!vis[e[i].ver]) //SPFA和dij的区别
vis[e[i].ver]=true,q.push(e[i].ver);
}
}
}
<4> 统计路径条数
如:【p2047】社交网络/【p1144】最短路计数
相同大小时,累加(floyd累乘);更优时,重新计算。
<5> 最短路径问题拓展
1.【p2832】行路难,统计权值时要考虑点权。
2. 许多题目需要建立反图,巧妙处理起点终点的关系。
3.【p1027】Car的旅行路线,多个起点的最短路算法。
4.【p2939】改造路,分层图最短路。
------差分约束
对于式子x-y<=b,在x,y之间建立长度为b的边,转换成最短路问题。
建边:1.a-b>=c,w(b,a)=-c; 2.a-b<=c,w(a,b)=c;
3.a=b,w(a,b)=w(b,a)=0; 4.a-b>c,w(b,a)=-c-1; 5.a-b<c,w(a,b)=c-1;
<1> 给出一些形如x-y<=b不等式的约束,问你满足条件是否有解。
处理:SPFA判负环。cnt[v]=cnt[u]+1; if(cnt[v]>n) ...
<2> 给出一些形如x-y<=b不等式的约束,问你满足条件的最大值。
处理:直接求最短路即可。最短路--最大值;最长路--最小值。
------强连通分量
tarjan算法中的常用数组和变量:
int dfn[N],low[N],stack[N],vis[N];
int dfn_=0,top_=0,sum=0,col[N];
//dfn序,栈中位置top,强连通个数sum,每点所属连通块编号col[i]
main函数中的循环:
for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
tarjan主程序:
void tarjan(int u){ //dfn_记录当前dfs序到达的数字
dfn[u]=low[u]=++dfn_,vis[u]=1,stack[++top_]=u; //步骤一:初始化
for(int i=head[u];i;i=e[i].nextt){ //步骤二:枚举连向点,递归更新
if(!dfn[e[i].ver]) tarjan(e[i].ver),low[u]=min(low[u],low[e[i].ver]);
else if(vis[e[i].ver]) low[u]=min(low[u],dfn[e[i].ver]); //这里写dfn或low都可以
} //↑↑步骤三:已经到达过,判断是否在当前栈内(栈内都是当前情况下能相连的点)
if(dfn[u]==low[u]){
col[u]=++sum; vis[u]=0;
while(stack[top_]!=u){ //u上方的节点是可以保留的
col[stack[top_]]=sum;
vis[stack[top_]]=0,top_--;
} top_--; //col数组记录每个点所在连通块的编号
}
}
缩点之后的统计(入度、大小):
int times[N],du[N]; //times数组/du数组记录每个强连通分量的大小/入度
for(int u=1;u<=n;u++){
for(int i=head[u];i;i=e[i].nextt)
if(col[e[i].ver]!=col[u]) du[col[e[i].ver]]++;
times[col[u]]++; //记录强连通分量大小
}
无向图缩点:
for(int i=head[u];i;i=e[i].nextt){
if(e[i].ver==u_fa) continue; //无向图缩点与有向图的区别
if(!dfn[e[i].ver]) tarjan(e[i].ver,u),low[u]=min(low[u],low[e[i].ver]);
else if(!col[e[i].ver]) low[u]=min(low[u],dfn[e[i].ver]); //这里直接用col数组
}
------拓扑排序
① 从图中选择一个入度为0的点加入拓扑序列。
② 从图中删除该结点以及它的所有出边(即与之相邻点入度减1)。
③ 反复执行这两个步骤,直到所有结点都已经进入拓扑序列。
拓扑排序判环(入队的点<n,则出现了环):
//给出n个顺序关系,问是否合法。
queue<int>q;
bool tp_sort(){ //拓扑排序判环
for(int i=1;i<=n;i++)
if(rd[i]==0) q.push(i);
while(!q.empty()){
x=q.front(),q.pop(),cnt++;
for(int i=head[x];i;i=e[i].nextt){
rd[e[i].ver]--; //rd--,相当于‘删边’
if(rd[e[i].ver]==0) q.push(e[i].ver);
}
} if(cnt==n) return true; return false;
}
将原序列进行拓扑排序,得到新顺序:
//给出n个名次关系,求出符合条件的排名顺序,输出字典序最小的答案。
priority_queue< int,vector<int>,greater<int> >q; //小顶堆
int tp_sort(){ //拓扑排序
for(int i=1;i<=n;i++)
if(rd[i]==0) q.push(i);
while(!q.empty()){
x=q.top(),q.pop(),cnt++,ans[cnt]=x;
for(int i=head[x];i;i=e[i].nextt){
rd[e[i].ver]--; //rd--,相当于‘删边’
if(rd[e[i].ver]==0) q.push(e[i].ver);
}
}
}
------LCA
pre_dfs函数确定fa(即f[u][0]):
void pre_dfs(int u,int fa_){
for(int i=0;i<=19;i++) f[u][i+1]=f[f[u][i]][i],
w[u][i+1]=min(w[u][i],w[f[u][i]][i]);
//↑↑维护lca路径上的最小值,注意w数组不需要初始化
for(int i=head[u];i;i=e[i].nextt){
int v=e[i].ver; //找到下一条相连的边
if(v==fa_) continue;
dep[v]=dep[u]+1; //深度
dist[v]=dist[u]+e[i].w; //距离
f[v][0]=u,w[v][0]=e[i].w,pre_dfs(v,u);
}
}
找LCA的主程序(确定lca):
int lca(int x,int y){ //找lca的主程序
int anss=(int)1e9; //找到lca路径上的最短边
if(dep[x]<dep[y]) swap(x,y); //保证dep[x]>dep[y]
for(int i=20;i>=0;i--){ //注意:这里的20和上面的19都是log2n的近似取值
if(dep[f[x][i]]>=dep[y]) anss=min(anss,w[x][i]),x=f[x][i];
//↑↑↑i的2^k辈祖先的结点仍比y深,令x=f[x,i],继续向上跳
if(x==y) return anss; //若x=y,则已经找到了lca
}
for(int i=20;i>=0;i--) //↓↓↓未找到lca时的倍增跳法
if(f[x][i]!=f[y][i]) //更新次路径上的最短边,并继续向上跳
anss=min(anss,min(w[x][i],w[y][i])),x=f[x][i],y=f[y][i];
lca=f[x][0]; //如果只需要找lca,直接返回f[x][0]即可
return anss=min(anss,min(w[x][0],w[y][0])); //路径上的最小边
}
【四. 数据结构】
------树状数组
<1> 单点修改,区间查询:ans=query(y)-query(x-1)。
void add(ll x,ll k) //单点修改、维护前缀和
{ for(i=x;i<=n;i+=i&-i) c[i]+=k; }
ll query(ll x) //区间查询、查询前缀和
{ ll sum=0; for(i=x;i>0;i-=i&-i) sum+=c[i]; return sum; }
<2> 区间修改,单点查询:c[x]被设置为差分数组前缀和,初始化为0。
区间修改:add(x,k),add(y+1,-k); 单点查询:ans=a[x]+query(x);
<3> 区间修改,区间查询:维护两个数组的前缀和。
sum1[i]=d[i]; sum2[i]=d[i]∗i; (d是差分数组)
直接把a数组处理成前缀和的形式(省略sum数组):
scanf("%lld",&a[i]),a[i]+=a[i-1];
区间修改:add(x,k),add(y+1,-k);
区间查询:query(y)-query(x-1)+a[y]-a[x-1];
每次用【差分】思路修改时:sum1[x]+k,sum1[y+1]-k ; sum2[x]+x*k,sum2[y+1]-(y+1)*k。
void add(ll x,ll k) //维护(差分数组的)区间前缀和
{ for(int i=x;i<=n;i+=i&-i) sum1[i]+=k,sum2[i]+=x*k; }
查询位置x的差分前缀和即:(x+1)*sum1数组中p的前缀和-sum2数组中p的前缀和。
ll query(ll x) //查询(差分数组的)区间前缀和
{ ll sum=0; for(int i=x;i>0;i-=i&-i) sum+=(x+1)*sum1[i]-sum2[i]; return sum; }
<4> 二维 —— 单点修改,区间查询
void add(ll x,ll y,ll k){ //【单点修改】
for(int i=x;i<=n;i+=i&-i)
for(int j=y;j<=m;j+=j&-j) c[i][j]+=k;
} //【维护二维前缀和】
ll query(ll x,ll y){ //【查询二维前缀和】
ll sum=0; //即:从左上角的(1,1)到(x,y)的矩阵和
for(int i=x;i>=1;i-=i&-i)
for(int j=y;j>=1;j-=j&-j) sum+=c[i][j];
return sum; //返回二维前缀和
}
ans=query(xx,yy)-query(xx,y-1)-query(x-1,yy)+query(x-1,y-1);
<5> 二维 —— 区间修改,单点查询
修改时:add(x,y,k),add(xx+1,yy+1,k),add(xx+1,y,-k),add(x,yy+1,-k);
修改时用到了差分的思想,查询时直接 a[x][y]+query(x,y) 即可。
<6> 二维 —— 区间修改,区间查询 过/于/复/杂/暂/不/简/述...
------线段树
<1> 线段树维护区间最值/区间和
线段树结构体(数组要开4倍):
struct SegmentTree{ int l,r,sum; }tree[4*N];
build-建树函数:
void build(int l,int r,int rt){ //【建树】
tree[rt].l=l; tree[rt].r=r; //建立标号与区间的关系
if(l==r){ scanf("%d",&tree[rt].sum); return; } //叶子节点
int mid=(l+r)/2; build(l,mid,rt<<1),build(mid+1,r,rt<<1|1);
PushUp(rt); //将修改值向上传递
}
PushUp-上移函数:
void PushUp(int rt){ tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum; }
add-单点修改函数:
void add(int p,int rt){ //【单点修改】
if(tree[rt].l==tree[rt].r){ tree[rt].sum+=y; return; } //叶子节点
int mid=(tree[rt].l+tree[rt].r)>>1;
if(p<=mid) add(p,rt<<1); else add(p,rt<<1|1);
tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;//所有包含结点rt的结点状态更新
}
query-单点查询函数:
void query(int p,int rt){ //【单点查询】
if(tree[rt].l==tree[rt].r){ ans=tree[rt].sum; return; } //叶子节点
int mid=(tree[rt].l+tree[rt].r)>>1;
if(p<=mid) query(p,rt<<1); else query(p,rt<<1|1);
}
sum-区间查询函数:
void sum(int rt){ //【区间查询求和】
if(tree[rt].l>=x&&tree[rt].r<=y) //区间完全包含
{ ans+=tree[rt].sum; return; }
int mid=(tree[rt].l+tree[rt].r)>>1;
if(x<=mid) sum(rt<<1); //区间部分重叠,递归左右
if(y>=mid+1) sum(rt<<1|1);
}
<2> 线段树维护最大的可行区间(【p2894】酒店)
需要维护三个最大值:
1.这个区间内最多的连续空格的个数.ans。
2.这个区间从左端点开始向右的空格的个数.l。
3.这个区间从右端点开始向左的空格的个数.r。
结构体改成: struct node{ int l,r,tag,ans; }tree[N];
void PushUp(int l,int r,int rt){
int mid=(l+r)>>1,ls=(rt<<1),rs=(rt<<1|1);
tree[rt].l=(tree[ls].ans==mid-l+1)?(tree[ls].ans+tree[rs].l):tree[ls].l;
tree[rt].r=(tree[rs].ans==r-mid)?(tree[rs].ans+tree[ls].r):tree[rs].r;
tree[rt].ans=max(tree[ls].ans,tree[rs].ans);
tree[rt].ans=max(tree[rt].ans,tree[ls].r+tree[rs].l);
}
线段树中最重要的就是PushDown函数:
void PushDown(int l,int r,int rt){ //tag是区间修改的标记
int mid=(l+r)>>1; if(tree[rt].tag==-1||l==r) return;
tree[rt<<1].tag=tree[rt<<1|1].tag=tree[rt].tag,
tree[rt<<1].ans=(tree[rt].tag==0)?(mid-l+1):0;
tree[rt<<1|1].ans=(tree[rt].tag==0)?(r-mid):0;
tree[rt<<1].l=tree[rt<<1].r=tree[rt<<1].ans;
tree[rt<<1|1].l=tree[rt<<1|1].r=tree[rt<<1|1].ans;
tree[rt].tag=-1; //标记每次下移一位,并清空上一位置的标记
}
注意,修改函数和询问函数中,如果没有到达终点,就要不断PushDown。
------分块
主要思想:每整块标记tag,剩下的l、r两个边界块直接修改。
分块大小:m=sqrt(n); 方式:for(i=1~n) pos[i]=(i-1)/m+1;
难题:【区间开方取整+区间求和】okk数组记录每个整块中的元素是否全部<=1。
难题:【单点插入+单点询问】暴力插入,如果某块太大,需要重新分块。
难题:【查询区间最小众数】f[i][j]记录第i到j块的众数,vector存每种数出现的所有位置。
【五. 动态规划】
DP =「状态」+「阶段」+「决策」
------线性DP
<1> LIS:最长上升子序列
for(int i=1;i<=n;i++) f[i]=1;
for(int i=2;i<=n;i++)
for(int j=i-1;j>=f[i];j--)
//↑↑↑【剪枝】j>=f[i]:如果j小于目前长度,不可能使答案更新
if(a[j]<a[i]) f[i]=max(f[i],f[j]+1);
for(int i=1;i<=n;i++) ans=max(ans,f[i]);
O(n*logn)
for(int i=1;i<=n;i++) reads(a[i]);
for(int i=1;i<=n;i++){
if(a[i]>list[len])
{ list[++len]=a[i]; continue; }
int pos=lower_bound(list+1,list+len+1,a[i])-list;
list[pos]=a[i];
} printf("%d\n",len);
<2> LCS:最长公共子序列
for(int i=1;i<=lens;i++)
for(int j=1;j<=lent;j++){
f[i][j]=max(f[i-1][j],f[i][j-1]);
if(s[i]==t[j]) //如果元素相同
f[i][j]=max(f[i][j],f[i-1][j-1]+1);
} //注意:为了防止数组下标出现-1,输入时要用ss+1
printf("%d\n",f[lens][lent]);
O(n*logn)
for(int i=1;i<=n;i++)
reads(a1[i]),id[a1[i]]=i;
for(int i=1;i<=n;i++) reads(a2[i]);
for(int i=1;i<=n;i++){
if(id[a2[i]]>list[len]){
list[++len]=id[a2[i]]; continue;
} int k=lower_bound(list+1,list+len+1,id[a2[i]])-list;
list[k]=id[a2[i]];
} printf("%d\n",len);
------背包DP
<1> 0/1背包
注意:dp数组初始化为maxx,设置起点dp[0]=0;
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--) //注意:一定要倒序循环
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
for(int j=0;j<=m;j++) ans=max(ans,dp[j]);
<2> 完全背包
for(int i=1;i<=n;i++)
for(int j=v[i];j<=m;j++) //注意:一定要正序循环
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
for(int j=0;j<=m;j++) ans=max(ans,dp[j]);
<3> 分组背包
for(int i=1;i<=n;i++) //每组只能选一个
for(int j=m;j>=0;j--) //倒序
for(int k=1;k<=c[i];k++) //注意:循环顺序与多重背包相反
//↑↑↑这里的个数循环要放在容量循环的后面,才能保证唯一性
if(j>=v[i][k]) f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
<4> 多重背包
for(int i=1;i<=n;i++)
for(int j=1;j<=s[i];j++) //先枚举个数
for(int k=m;k>=v[i];k--) //枚举总体积、倒序循环
dp[k]=max(dp[k],dp[k-v[i]]+w[i]);
for(int j=0;j<=m;j++) ans=max(ans,dp[j]);
【拓展】多重背包的二进制拆分
把多重背包的第i种物品看成独立的 k(log(s[i]))+2 个物品,转化为0/1背包。
p[i]=2^0+2^1+...+2^k+r[i](多余部分),用这些物品可以表示出这种物品所有<=p[i]的数量。
二进制拆分:
void broke(){ //【多重背包的二进制拆分】
for(int i=1;i<=n;i++){
int cnt=1; //cnt=2^k
while(s[i]!=0){ //没拆分完
ww[++num]=w[i]*cnt;
vv[num]=v[i]*cnt; //价值和代价都要*cnt
s[i]-=cnt; cnt=cnt<<1; //cnt*2
if(s[i]<cnt){ //多出来的部分(即r[i])
ww[++num]=w[i]*s[i];
vv[num]=v[i]*s[i]; break;
}
}
}
}
转化为01背包:
for(int i=1;i<=num;i++) //拆分后的物品个数
for(int j=m;j>=vv[i];j--) f[j]=max(f[j],f[j-vv[i]]+ww[i]);
------区间DP
一个状态、由若干个比它更小、且包含于它的区间、所代表的状态转移而来。
【区间DP的状态转移方法】
从小到大枚举区间长度,枚举对应长度的区间。
for(int len=1;len<=N;++len) //区间长度
for(int l=1,r=len;r<=N;++l,++r)
{ 考虑F[l][r]的转移方式 }
基本决策(枚举断点):dp[i][j]=min{ dp[i][k]+dp[k+1][j] | i<=k<j };
【求dp[i][j]具体步骤】(p4170-涂色)
当i==j时,子串明显只需要涂色一次,于是dp[i][i]=1。
当i!=j且s[i]==s[j]时,可以直接继承之前的状态,于是dp[i][j]=min(dp[i][j-1],dp[i+1][j])。
当i!=j且s[i]!=s[j]时,枚举子串的断点k,于是dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j])。
难题:括号配对 / p1005-矩阵取数...
------环形DP
【破环为链】for(int i=1;i<=N;i++) v[N+i]=v[i]; //注意:数组要开2*N大小。
------树形DP
<1> 0/1型树形DP
又称树的最大独立集问题。比如【p2016-战略游戏】
当前节点选或不选,父亲节点选或不选,儿子节点选或不选。
规划所有状态,递归子树,判断转移,得出最终的答案。
<2> 背包类树形DP
又称有树形依赖的背包问题。比如【p2014-选课】。
除了以 “节点编号” 作为树形DP的阶段(第一维度),
还要把当前背包的 “体积” 作为第二维状态。
------数位DP
区间可减性:ans(l,r)=sum(r)-sum(l-1);
int counts(int x){ //保存上界x的每一位
int len=0;
while(x) bit[len++]=x%10,x/=10;
return dfs(len-1,0,true);
} //注意是len-1,在dp函数中边界为:pos=-1
数位DP的主函数:
int dfs(int pos,int sum,bool limit){
if(pos==-1) return (sum==0); //是否是mod的倍数
if(!limit&&f[pos][sum]) return f[pos][sum]; //记忆化
int end=(limit==1)?bit[pos]:9,ans=0;
for(int i=0;i<=end;i++){ //end是当前上界
int newsum=(sum+i)%mod; //数字和
ans+=dfs(pos-1,newsum,limit&&(i==end));
} if(!limit) f[pos][sum]=ans; return ans;
} //当前情况下不用判断前导0,但有些时候需要判断
------状压DP
以一个集合内的元素信息作为状态、且状态总数为指数级别的DP。
(1)具体解题模式:
【找状态】确定每行的M位二进制数中0、1的表示。
【存已知】存入时把初始[每行]的二进制状态变为一个十进制的数,便于数位操作。
【预处理】结合输入求出[每行]的[所有满足可行性]的M位二进制数。
【判边界】一般行列间的关系在[起始行]并不适用,要[特殊处理]第一行的状态。
【列方程】逐层枚举每行和上一行的状态,[判断行列关系],列状态转移方程。
(2)常用转移方程:
if((s&(1<<(j-1)))&&(s&(1<<(i-1)))) //j是当前的结尾节点
f[s][j]=min(f[s][j],f[s^(1<<(j-1))][i]+cost[i][j]);
枚举最后作为结尾的结点:ans=min(f[(1<<n)-1][i]);
(3)常用的二进制操作:
1.每行选几个:取二进制状态下1的个数,用counts函数。
int counts(int x){ int cnt=0; while(x) x&=(x-1),cnt++; return cnt; }
2.每行每列没有相邻的:枚举所有状态,!(i&(i<<1)) 时才是每行的可行状态,存入state[ ]中。
初始化第一行的情况,转移时,枚举此行的状态和上一行的状态,行间需要满足:
if(!(state[now]&state[last])&&j>=sum[now]) //j:前i行选的个数
------单调队列优化DP
1、维护队首可行性,head++;
2、维护队尾单调性,并插入当前元素;
3、取出队头的最优解,进行DP转移。
int head=1,tail=1; //手写优先队列
q[1].x=a[1]; q[1].id=1; //初始点为1
for(int i=2;i<=n;i++){ //从2开始循环
while(head<=tail && q[head].id<i-m+1) head++; //id的作用:判断区间长度
if(i>=m) printf("%d\n",q[head].x); //每一次的队头都是当前段最大值
while(head<=tail && q[tail].x<=a[i]) tail--;
//↑↑新数比前几个大,前几个不可能再成为最大值(可能不止一个)
q[++tail].x=a[i]; q[tail].id=i; //a[i]加入队尾
//单调递减队列:如果后方有数更大,前面就删除;
}
------斜率优化DP
对于每个斜率方程 (Y(j2)-Y(j1))/(X(j2)-X(j1)):
1.将数据进行预处理(求sum等操作),优化序列。
2.写状态转移方程,如果是二维,要使用二维单调队列。
3.推导不等式,化成斜率的一般式,一般使用化除为乘。
4.从而得到X,Y的定义式,用double类型表示出来。
5.建立一个类似优先队列的斜率单调队列。
6.维护头尾可行性以及斜率单调性,队头为最优答案。
【六. 数论】
<1> 取整除法求和
ll ans(ll n){ //O(√n)
ll anss=0,nn=sqrt(n) ;
for(ll i=1;i<=nn;i++) anss+=n/i;
return (anss<<1)-nn*nn;
} //先处理<=√n的,剩下的用公式推出
<2> N的正约数集合
int factor[2519],cnt=0;
for(int i=1;i*i<=n;i++){
if(n%i==0){
factor[++cnt]=i;
if(i!=n/i) factor[++cnt]=n/i;
}
}
<3> 最大公约数GCD
int gcd(int a,int b){ return (b==0)?a:gcd(b,a%b); }
难题:高精度版最大公约数(用二进制算法)
<4> 求解不定方程---EXGCD
int exgcd(int a,int b,int &x,int &y){
if(b==0){ x=0; y=1; return a; } //b<=a
int gcd_=exgcd(a%b,b,y,x); //gcd_是a、b的最大公约数
x-=(a/b)*y; return gcd_; //x=x0-[a/b(下取整)]*y0; y=y0;
}
int cal(){ //a*x+b*y=c
int gcd_=exgcd(a,b,x,y);
if(c%gcd_!=0) return -1; //不可能有解
x*=c/gcd_,b/=gcd_;
if(b<0) b=-b; int ans=x%b;
if(ans<=0) ans+=b; return ans;
} //注意ans=0的情况↑↑
<5> 埃式筛质数
int vis[N],primes[N],cnt=0;
void init(int x){
for(int i=2;i<=x;i++)
if(!vis[i]){
primes[cnt++]=i;
for(int j=i+i;j<=x;j+=i)
vis[j]=1;
}
}
<6> 分解质因数
void init(int x){ int cnt=0;
for(int i=2;i*i<=x;i++)
while(x%i==0) primes[++cnt]=i,x/=i;
if(x>1) primes[++cnt]=x;
}
<7> 快速幂
ll ksm(ll a,ll b,ll mod){
ll anss=1; //注意初始化为1
while(b>0){ //求a的b次方%mod
if(b&1) anss=anss*a%mod;
a=a*a%mod; b>>=1;
} return anss;
}
<8> 乘法逆元
ll inv1(ll a,ll mod){ //扩展欧几里得求逆元
ll x,y; ll d=exgcd(a,mod,x,y);
if(d==1) return (x%mod+mod)%mod; return -1; }
ll inv2(ll a,ll mod){ return ksm(a,mod-2,mod); } //费马小定理
void inv3(ll mod){ inv[1]=1; //线性递推求逆元
for(int i=2;i<=mod-1;i++) //求1~n的逆元
inv[i]=(mod-mod/i)*inv[mod%i]%mod,cout<<inv[i]<<" ";
}
<9> 组合数
for(int i=0;i<=MAXN;i++)
C[0][i]=0,C[i][0]=1;
for(int i=1;i<=MAXN;i++)
for(int j=1;j<=MAXN;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
<10> Lucas定理
公式:Lucas(C(n,m)%p)=Lucas(C(n%p,m%p)%p)*Lucas(C(n/p,m/p)%p)
kk[0]=kk[1]=inv[0]=inv[1]=1; //阶乘数组&&逆元数组初始化
for(int i=2;i<=n;i++) kk[i]=kk[i-1]*i%p; //阶乘
for(int i=2;i<=n;i++) inv[i]=(p-p/i)*inv[p%i]%p; //线性推逆元
for(int i=2;i<=n;i++) inv[i]=inv[i-1]*inv[i]%p; //k!%p的逆元 等于 逆元的阶乘
printf("%lld\n",lucas(n,m)); //调用卢卡斯函数
long long lucas(int n,int m){
if(n<m) return 0; //无法构成组合数,返回答案为0
if(n<p) return kk[n]*inv[m]*inv[n-m]%p; //n的阶乘*(m!%p的逆元)*((n-m)!%p的逆元)
else return lucas(n/p,m/p)*lucas(n%p,m%p)%p;
}
<11> Nim游戏
如果每一堆石子的个数异或起来的值不为0,那么先手必胜。
如果个数异或起来的值为0,那么先手必败。
for(int i=1,x;i<=n;reads(x),ans^=x,i++); if(ans) puts("Yes"); else puts("No");
——时间划过风的轨迹,那个少年,还在等你
标签:生成树 保存 函数 精度 区间查询 最大的 algo 筛法 new
原文地址:https://www.cnblogs.com/FloraLOVERyuuji/p/10322507.html