码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习之--线性分类(一)

时间:2019-02-01 21:11:03      阅读:224      评论:0      收藏:0      [点我收藏+]

标签:object   可能性   bsp   core   机器学习   最小   通过   权重   vector   

---恢复内容开始---

对于图像的分类

线性分类器的组成:1.评分函数:将原始图像数据到类别分值的映射。2.损失函数:用来量化预测分类标签的得分与真实标签之间一致性的。该方法可转化为一个最优化问题,在最优化过程中,将通过更新评分函数的参数来最小化损失函数值。

一. 从原始图像到标签类别分值的参数化映射

评分函数是将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低。例如:

技术分享图片

技术分享图片

二.损失函数(loss function)

在评分函数中,该函数的参数是权重矩阵,因此在训练评分函数的过程中就是为了得到一个合适的权重矩阵。我们调整权重矩阵这个参数,使得评分函数的结果与训练数据集中图像的真实类别一致,即评分函数在正确的分类的位置应当得到最高的评分(score)。

那么,如何衡量评分函数的分类结果与图像真实位置的差异,------->损失函数

我们将使用损失函数(Loss Function)(有时也叫代价函数Cost Function或目标函数Objective)来衡量我们对结果的不满意程度。直观地讲,当评分函数输出结果与真实结果之间差异越大,损失函数输出越大,反之越小。

因此,线性分类器的训练过程就是,通过调整评分函数中的参数,即权重矩阵来使得损失函数达到最小。

损失函数的形式有多种,下面介绍常用的多类支持向量机(SVM)损失函数。

多类支持向量机损失 Multiclass Support Vector Machine Loss

 https://zhuanlan.zhihu.com/p/20945670?refer=intelligentunit

技术分享图片

 

机器学习之--线性分类(一)

标签:object   可能性   bsp   core   机器学习   最小   通过   权重   vector   

原文地址:https://www.cnblogs.com/machine-learining/p/10346964.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!