标签:stdout sum cal tde return eterm span ons inline
有\(n\)个未知数\(x_1, x_2, \cdots, x_n\),给出\(m\)条消息,每条消息选出一些未知数并告诉你他们的和的奇偶性。你的目标是判断每个未知数的奇偶性
如果前\(k\)条消息就可以确定所有未知数的奇偶性,输出\(k\)以及所有未知数的奇偶性,否则输出这是不可能的
\(n \leq 1000, m \leq 2000\)
抑或方程组的板子题,本质就是用\(bitset\)异或来优化一个方程加上另一个方程的这个过程
另外在找第\(i\)行非零方程是尽量找靠前的,同时更新一下最大值即可
时间复杂度\(\mathcal{O}(\frac{n ^ 3}{64})\)
#include <bits/stdc++.h>
using namespace std;
#define fst first
#define snd second
#define mp make_pair
#define squ(x) ((LL)(x) * (x))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef pair<int, int> pii;
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
inline int read() {
int sum = 0, fg = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == ‘-‘) fg = -1;
for (; isdigit(c); c = getchar()) sum = (sum << 3) + (sum << 1) + (c ^ 0x30);
return fg * sum;
}
const int maxn = 1e3 + 10;
const int maxm = 2e3 + 10;
bitset<maxn> a[maxm], ans;
int n, m;
int main() {
#ifdef xunzhen
freopen("alien.in", "r", stdin);
freopen("alien.out", "w", stdout);
#endif
n = read(), m = read();
for (int i = 1; i <= m; i++) {
static char s[maxn];
scanf("%s", s);
for (int j = 0; j < n; j++) a[i][j + 1] = s[j] - 0x30;
a[i][n + 1] = (bool)read();
}
int Max = n;
for (int i = 1; i <= n; i++) {
int p = i;
for (int j = i + 1; j <= m; j++)
if (a[j][i]) { p = j, chkmax(Max, j); break; }
if (!a[p][i]) { printf("Cannot Determine\n"); return 0; }
if (p != i) swap(a[p], a[i]);
for (int j = i + 1; j <= m; j++)
if (a[j][i]) a[j] ^= a[i];
}
for (int i = n; i; i--) {
for (int j = i + 1; j <= n; j++)
if (a[i][j] & ans[j]) a[i].flip(n + 1);
ans[i] = a[i][n + 1];
}
printf("%d\n", Max);
for (int i = 1; i <= n; i++) printf(ans[i] ? "?y7M#\n" : "Earth\n");
return 0;
}
标签:stdout sum cal tde return eterm span ons inline
原文地址:https://www.cnblogs.com/xunzhen/p/10353672.html