标签:red http date else cst upd pre 红黑树 find
过年啦!!!
在这红红火火的日子里,肯定要写\(\color{red}{\mathrm{Red}}\;\color{black}{\mathrm{Black}}\;tree\)来愉悦身心啊
然鹅出现了一些小尴尬
虽然代码行数跟\(\mathrm{s(p)lay}\)没法比肯定是大括号太占地方了
但是:
指针版的\(\mathrm{s(p)lay}\):https://www.luogu.org/recordnew/show/8772600
\(\color{red}{\mathrm{Red}}\;\color{black}{\mathrm{Black}}\;tree\):https://www.luogu.org/recordnew/show/16079271
代码长度比较起来,红黑树胜!!!
ha???
速度当然也是吊着打啦
从此红黑树走进了每个OIer的电脑
我这能算突破红黑树代码长度极限了吗\(\mathrm{QwQ}\)
#include<cstdio>
#include<cstring>
#include<climits>
#define RG register
inline int read()
{
int data = 0, w = 1;
char ch = getchar();
while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(1e6 + 10);
int son[2][maxn], fa[maxn], size[maxn], cur;
int cnt[maxn], col[maxn], val[maxn], root;
inline void newNode(int k, int c, int f)
{
int x = ++cur;
fa[x] = f, size[x] = cnt[x] = 1;
val[x] = k, col[x] = c;
}
inline void update(int x) { size[x] = size[son[0][x]] + cnt[x] + size[son[1][x]]; }
inline void rotate(int x, int r)
{
int y = son[!r][x]; son[!r][x] = son[r][y];
if(son[r][y]) fa[son[r][y]] = x;
fa[y] = fa[x]; if(!fa[x]) root = y;
else son[x == son[1][fa[x]]][fa[x]] = y;
son[r][y] = x, fa[x] = y, size[y] = size[x];
update(x);
}
inline void transplant(int to, int from)
{
fa[from] = fa[to]; if(!fa[to]) root = from;
else son[to == son[1][fa[to]]][fa[to]] = from;
}
int findMin(int x) { while(son[0][x]) x = son[0][x]; return x; }
void insertFixUp(int z)
{
while(col[fa[z]])
{
int f = fa[z], g = fa[f], l = f == son[0][g], y = son[l][g];
if(col[y]) col[y] = col[f] = 0, col[z = g] = 1;
else
{
if(z == son[l][f]) z = f, rotate(z, !l);
col[fa[z]] = 0, col[fa[fa[z]]] = 1; rotate(g, l);
}
}
col[root] = 0;
}
void insert(int k)
{
int x = root, y = 0;
while(x)
{
++size[y = x]; if(val[x] == k) return (void) (++cnt[x]);
x = son[val[x] < k][x];
}
newNode(k, 1, y);
if(!y) root = cur; else son[val[y] < k][y] = cur;
insertFixUp(cur);
}
void delFixUp(int x)
{
while(x != root && (!col[x]))
{
int l = x == son[0][fa[x]], f = fa[x], w = son[l][f];
if(col[w])
{
col[f] = 1, col[w] = 0;
rotate(f, !l); w = son[l][f];
}
if((!col[son[0][w]]) && (!col[son[1][w]])) col[w] = 0, x = fa[x];
else
{
if(!col[son[l][w]])
col[w] = 1, col[son[!l][w]] = 0,
rotate(w, l), w = son[l][f];
col[w] = col[f], col[f] = 0; col[son[l][w]] = 0;
rotate(fa[w], !l); x = root;
}
}
col[x] = 0;
}
void erase(int k)
{
int z = root, w = 0;
while(z)
{
--size[w = z]; if(k == val[z]) break;
z = son[val[z] < k][z];
}
if(z)
{
if(cnt[z] > 1) return (void) (--cnt[z]);
int y = z, x, oldc = col[y];
if(!son[0][z]) x = son[1][z], transplant(z, son[1][z]);
else if(!son[1][z]) x = son[0][z], transplant(z, son[0][z]);
else
{
y = findMin(son[1][z]); oldc = col[y], x = son[1][y];
if(fa[y] == z) fa[x] = y;
else
{
int tmpy = y;
while(tmpy != z) size[tmpy] -= cnt[y], tmpy = fa[tmpy];
transplant(y, son[1][y]); son[1][y] = son[1][z];
fa[son[1][y]] = y;
}
transplant(z, y); son[0][y] = son[0][z];
fa[son[0][y]] = y, col[y] = col[z]; update(y);
}
if(!oldc) delFixUp(x);
}
else while(w) ++size[w], w = fa[w];
}
inline int cmp(int x, int k) { return (val[x] < k) ? 0 : (val[x] ^ k ? 1 : -1); }
int suc(int k, int b)
{
int x = root, p = 0;
while(x) if(cmp(x, k) == b) p = x, x = son[!b][x];
else x = son[b][x];
return val[p];
}
int k_th(int k)
{
int x = root;
while(x)
{
int l = son[0][x], r = son[1][x];
if(size[l] + 1 <= k && size[l] + cnt[x] >= k) return val[x];
else if(size[l] + cnt[x] < k) k -= size[l] + cnt[x], x = r; else x = l;
}
return INT_MAX;
}
inline int rank(int r)
{
int x = root, ret = 0;
while(x)
{
if(val[x] < r) ret += size[son[0][x]] + cnt[x], x = son[1][x];
else x = son[0][x];
}
return ret + 1;
}
int main()
{
int n = read();
while(n--)
{
int opt = read(), x = read();
switch(opt)
{
case 1: insert(x); break;
case 2: erase(x); break;
case 3: printf("%d\n", rank(x)); break;
case 4: printf("%d\n", k_th(x)); break;
case 5: case 6: printf("%d\n", suc(x, opt - 5)); break;
}
}
return 0;
}
标签:red http date else cst upd pre 红黑树 find
原文地址:https://www.cnblogs.com/cj-xxz/p/10353748.html