标签:mes pre let val max rem inline 平衡 root
$Treap$实现
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define re register 6 #define rep(i, a, b) for (re int i = a; i <= b; ++i) 7 #define repd(i, a, b) for (re int i = a; i >= b; --i) 8 #define maxx(a, b) a = max(a, b); 9 #define minn(a, b) a = min(a, b); 10 #define LL long long 11 #define INF (1 << 30) 12 13 inline int read() { 14 int w = 0, f = 1; char c = getchar(); 15 while (!isdigit(c)) f = c == ‘-‘ ? -1 : f, c = getchar(); 16 while (isdigit(c)) w = (w << 3) + (w << 1) + (c ^ ‘0‘), c = getchar(); 17 return w * f; 18 } 19 20 struct Node { 21 Node* ch[2]; 22 int v, r, c, s; 23 int cmp(int x) const { 24 if (x == v) return -1; 25 return x < v ? 0 : 1; 26 } 27 void maintain() { 28 s = c + ch[0]->s + ch[1]->s; 29 } 30 }; 31 32 Node* null; 33 34 void newnode(Node* &o) { o = new Node(); o->r = rand(); o->ch[0] = o->ch[1] = null; o->v = o->s = o->c = 0; } 35 void setnode(Node* &o, int v) { o->v = v; o->s = o->c = 1; } 36 37 void rotate(Node* &o, int d) { 38 Node* k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; 39 o->maintain(), k->maintain(); o = k; 40 } 41 42 void insert(Node* &o, int v) { 43 if (o == null) { newnode(o); setnode(o, v); return; } 44 int d = o->cmp(v); 45 if (d == -1) o->c++, o->s++; 46 else { 47 insert(o->ch[d], v); 48 if (o->ch[d]->r > o->r) rotate(o, d^1); 49 o->maintain(); 50 } 51 } 52 53 void remove(Node* &o, int v) { 54 int d = o->cmp(v); 55 if (d == -1) { 56 if (o->c) o->c--; 57 if (!o->c) { 58 if (o->ch[0] != null && o->ch[1] != null) { 59 int d2 = o->ch[0]->r < o->ch[1]->r ? 0 : 1; 60 rotate(o, d2); remove(o->ch[d2], v); 61 } 62 else { 63 Node* u = o; 64 if (o->ch[0] != null) o = o->ch[0]; else o = o->ch[1]; 65 delete u; 66 } 67 } 68 } 69 else remove(o->ch[d], v); 70 o->maintain(); 71 } 72 73 int get_rank(Node* o, int v) { 74 int d = o->cmp(v); 75 if (d == -1) return o->ch[0]->s + 1; 76 return get_rank(o->ch[d], v) + d * (o->ch[0]->s + o->c); 77 } 78 79 int get_val(Node* o, int rk) { 80 if (rk <= o->ch[0]->s) return get_val(o->ch[0], rk); 81 else if (rk > o->ch[0]->s + o->c) return get_val(o->ch[1], rk - o->ch[0]->s - o->c); 82 else return o->v; 83 } 84 85 int get_pre(Node* o, int v) { 86 if (o == null) return -INF; 87 if (o->v >= v) return get_pre(o->ch[0], v); 88 else return max(o->v, get_pre(o->ch[1], v)); 89 } 90 91 int get_next(Node* o, int v) { 92 if (o == null) return INF; 93 if (o->v <= v) return get_next(o->ch[1], v); 94 else return min(o->v, get_next(o->ch[0], v)); 95 } 96 97 Node* root; 98 99 int n; 100 101 int main() { 102 newnode(null); 103 root = null; 104 n = read(); 105 rep(i, 1, n) { 106 int opt = read(), v = read(); 107 if (opt == 1) insert(root, v); 108 if (opt == 2) remove(root, v); 109 if (opt == 3) printf("%d\n", get_rank(root, v)); 110 if (opt == 4) printf("%d\n", get_val(root, v)); 111 if (opt == 5) printf("%d\n", get_pre(root, v)); 112 if (opt == 6) printf("%d\n", get_next(root, v)); 113 } 114 return 0; 115 }
标签:mes pre let val max rem inline 平衡 root
原文地址:https://www.cnblogs.com/ac-evil/p/10353729.html