标签:maximum int bsp 处理 new log opened span 经典
二叉树时间复杂度的训练:
T(n) = 2T(n/2)+o(n) nlogN 归并排序
快排:平均nlogN 最坏 n^2
树形展开法
T(N) = 2T(N/2)+O(1) o(n)
二叉树的时间复杂度= N*每个节点的处理时间
前序便利:根左右
中序 左根右
后序:左右根
DFS深度优先搜索:1.分治法 2.遍历法
递归的步骤:
1.定义 2.拆解 3.什么时候返回
divide & conquere:
定义的函数有return value
https://www.lintcode.com/problem/binary-tree-preorder-traversal/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 public class Solution { 14 /** 15 * @param root: A Tree 16 * @return: Preorder in ArrayList which contains node values. 17 */ 18 public List<Integer> preorderTraversal(TreeNode root) { 19 List<Integer> result = new ArrayList(); 20 if(root==null){ 21 return result; 22 } 23 24 List<Integer> left = preorderTraversal(root.left); 25 List<Integer> right = preorderTraversal(root.right); 26 27 result.add(root.val); 28 result.addAll(left); 29 result.addAll(right); 30 return result; 31 } 32 }
经典的分治算法 merge sort/quick sort
90%的二叉树都可以用divide&conquere的方法
https://www.lintcode.com/problem/maximum-depth-of-binary-tree/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 public class Solution { 14 /** 15 * @param root: The root of binary tree. 16 * @return: An integer 17 */ 18 public int maxDepth(TreeNode root) { 19 // write your code here 20 if(root == null){ 21 return 0; 22 } 23 24 int left = maxDepth(root.left); 25 int right = maxDepth(root.right); 26 return Math.max(left,right)+1; 27 } 28 }
二叉树问题一般return是root时return,但也有例外
https://www.lintcode.com/problem/binary-tree-paths/description 这道题需要处理叶子节点
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 public class Solution { 14 /** 15 * @param root: the root of the binary tree 16 * @return: all root-to-leaf paths 17 */ 18 public List<String> binaryTreePaths(TreeNode root) { 19 List<String> paths = new ArrayList<>(); 20 // write your code here 找到所有方案 都是用搜索 21 if(root==null){ 22 return paths; 23 } 24 25 //这道题需要处理叶子节点 26 if(root.left==null && root.right==null){ 27 paths.add(root.val + ""); 28 return paths; 29 } 30 31 //2.拆解 32 List<String> leftPaths = binaryTreePaths(root.left); 33 List<String> rightPaths = binaryTreePaths(root.right); 34 35 //merge 36 for(String path:leftPaths){ 37 paths.add(root.val + "->" + path); 38 } 39 40 for(String path:rightPaths){ 41 paths.add(root.val + "->" + path); 42 } 43 44 return paths; 45 } 46 }
https://www.lintcode.com/problem/minimum-subtree/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 public class Solution { 14 /** 15 * @param root: the root of binary tree 16 * @return: the root of the minimum subtree 17 */ 18 private int subtreeSum = Integer.MAX_VALUE; 19 private TreeNode subtree = null; 20 public TreeNode findSubtree(TreeNode root) { 21 // write your code here 22 helper(root); 23 return subtree; 24 } 25 26 private int helper(TreeNode root){ 27 if(root == null){ 28 return 0; 29 } 30 31 int sum = helper(root.left) + helper(root.right) + root.val; 32 if(sum <subtreeSum){ 33 subtreeSum = sum; 34 subtree = root; 35 } 36 37 return sum; 38 } 39 }
result type
treeMap 就是平衡二叉树
定义:对于每一个节点 左右高度不超过1
https://www.lintcode.com/problem/balanced-binary-tree/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 class ResultType{ 14 public boolean isBalanced; 15 public int maxDepth; 16 public ResultType(boolean isBalanced,int maxDepth){ 17 this.isBalanced = isBalanced; 18 this.maxDepth = maxDepth; 19 } 20 } 21 public class Solution { 22 /** 23 * @param root: The root of binary tree. 24 * @return: True if this Binary tree is Balanced, or false. 25 */ 26 //根节点左右高度不超过1,且左右平衡 27 public boolean isBalanced(TreeNode root) { 28 // write your code here 29 return Helper(root).isBalanced; 30 } 31 32 private ResultType Helper(TreeNode root){ 33 if(root == null){ 34 return new ResultType(true,0); 35 } 36 37 ResultType left = Helper(root.left); 38 ResultType right = Helper(root.right); 39 40 if(!left.isBalanced || !right.isBalanced ||Math.abs(left.maxDepth-right.maxDepth)>1){ 41 return new ResultType(false,-1); 42 } 43 44 return new ResultType(true,Math.max(left.maxDepth,right.maxDepth)+1); 45 } 46 }
LCA 最近公共祖先
https://www.lintcode.com/problem/lowest-common-ancestor-of-a-binary-tree/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 14 public class Solution { 15 /* 16 * @param root: The root of the binary tree. 17 * @param A: A TreeNode 18 * @param B: A TreeNode 19 * @return: Return the LCA of the two nodes. 20 */ 21 //A&B -> LCA 22 //!A&!B ->null 23 //A & !B ->A 24 //B&!A ->B 25 public TreeNode lowestCommonAncestor(TreeNode root, TreeNode A, TreeNode B) { 26 // write your code here 27 if(root ==null || root==A || root ==B){ 28 return root; 29 } 30 31 TreeNode left = lowestCommonAncestor(root.left,A,B); 32 TreeNode right = lowestCommonAncestor(root.right,A,B); 33 34 if(left!=null && right !=null){ 35 return root; 36 } 37 38 //lca or a or b 39 if(left!=null){ 40 return left; 41 } 42 43 if(right!=null){ 44 return right; 45 } 46 return null; 47 } 48 }
https://www.lintcode.com/problem/validate-binary-search-tree/description
1 /** 2 * Definition of TreeNode: 3 * public class TreeNode { 4 * public int val; 5 * public TreeNode left, right; 6 * public TreeNode(int val) { 7 * this.val = val; 8 * this.left = this.right = null; 9 * } 10 * } 11 */ 12 13 class ResultType{ 14 boolean isValidBST; 15 int min, max; 16 public ResultType(boolean isValidBST,int min, int max){ 17 this.isValidBST = isValidBST; 18 this.min = min; 19 this.max = max; 20 } 21 } 22 23 public class Solution { 24 /** 25 * @param root: The root of binary tree. 26 * @return: True if the binary tree is BST, or false 27 */ 28 public boolean isValidBST(TreeNode root) { 29 // write your code here 30 return Helper(root).isValidBST; 31 } 32 33 public ResultType Helper(TreeNode root){ 34 if(root == null){ 35 return new ResultType(true, Integer.MAX_VALUE,Integer.MIN_VALUE); 36 } 37 38 ResultType left = Helper(root.left); 39 ResultType right = Helper(root.right); 40 41 if(!left.isValidBST ||(root.left!=null && left.max>= root.val)){ 42 return new ResultType(false,0,0); 43 } 44 45 if(!right.isValidBST ||(root.right!=null && right.min<= root.val)){ 46 return new ResultType(false,0,0); 47 } 48 49 return new ResultType(true,Math.min(root.val, left.min),Math.max(root.val,right.max)); 50 } 51 }
标签:maximum int bsp 处理 new log opened span 经典
原文地址:https://www.cnblogs.com/lizzyluvcoding/p/10353389.html