标签:amp inf rect ssi ring mil HERE 距离 one
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
There is one blank line between successive tests.
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Input: 1 6 1 2 1 2 4 1 2 5 2 1 3 1 3 6 2 DIST 4 6 KTH 4 6 4 DONE Output: 5 3
看到树上两点距离很容易想到LCA,
对于第K个点我们同样可以倍增解决;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 9999973; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == ‘-‘) f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ struct node { int u, v, w, nxt; }e[maxn]; int head[maxn]; int tot; int n; int dis[maxn], dep[maxn]; int fa[maxn][20]; void init() { ms(e); ms(head); tot = 0; ms(dis); ms(dep); ms(fa); } void addedge(int u, int v, int w) { e[++tot].u = u; e[tot].v = v; e[tot].nxt = head[u]; e[tot].w = w; head[u] = tot; } void dfs(int rt) { for (int i = 1; i <= (int)log(n) / log(2) + 1; i++) fa[rt][i] = fa[fa[rt][i - 1]][i - 1]; for (int i = head[rt]; i; i = e[i].nxt) { int v = e[i].v; if (v == fa[rt][0])continue; fa[v][0] = rt; dep[v] = dep[rt] + 1; dis[v] = dis[rt] + e[i].w; dfs(v); } } int LCA(int x, int y) { if (dep[x] > dep[y])swap(x, y); for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) { if (dep[fa[y][i]] >= dep[x])y = fa[y][i]; } if (x == y)return x; for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) { if (fa[x][i] != fa[y][i]) { x = fa[x][i]; y = fa[y][i]; } } return fa[x][0]; } int main() { // ios::sync_with_stdio(0); int T = rd(); while (T--) { n = rd(); init(); for (int i = 1; i < n; i++) { int u = rd(), v = rd(), w = rd(); addedge(u, v, w); addedge(v, u, w); } dfs(1); char op[20]; while (rdstr(op) != EOF && op[1] != ‘O‘) { if (op[1] == ‘I‘) { int u = rd(), v = rd(); // cout << dis[u] << ‘ ‘ << dis[v] << ‘ ‘ << dis[LCA(u, v)] << endl; printf("%d\n", dis[u] + dis[v] - 2 * dis[LCA(u, v)]); } else { int u = rd(), v = rd(), k = rd(); int root = LCA(u, v); int ans; if (dep[u] - dep[root] + 1 >= k) { ans = dep[u] - k + 1; int i; for (i = 0; (1 << i) <= dep[u]; i++); i--; for (int j = i; j >= 0; j--) { if (dep[u] - (1 << j) >= ans)u = fa[u][j]; } printf("%d\n", u); } else { ans = dep[root] + k - (dep[u] - dep[root] + 1); int i; for (i = 0; (1 << i) <= dep[v]; i++); i--; for (int j = i; j >= 0; j--) { if (dep[v] - (1 << j) >= ans)v = fa[v][j]; } printf("%d\n", v); } } } } return 0; }
标签:amp inf rect ssi ring mil HERE 距离 one
原文地址:https://www.cnblogs.com/zxyqzy/p/10355532.html