码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习课程-第8周-聚类(Clustering)

时间:2019-02-08 14:27:34      阅读:182      评论:0      收藏:0      [点我收藏+]

标签:集中   移动   style   oid   决策   示例   距离   1.2   ec2   

1. 聚类(Clustering)

1.1 无监督学习: 简介

在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:

技术图片

非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成 两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法

技术图片

 这将是我们介绍的第一个非监督学习算法。当然,此后我们还将提到其他类型的非监督学习算法,它们可以为我们找到其他类型的结构或者其他的一些模式,而不只是簇。

 1.11 聚类算法用途

技术图片

1.2 K-均值算法

 

K-均值 是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。

 

 

K-均值 是一个迭代算法,假设我们想要将数据 聚类成n个组,其方法为:

 

 

  • 首先选择 K 个随机的点,称为聚类中心cluster centroids);

  • 对于数据集中的每一个数据,按照距离 K个中心点的距离,将其 与距离最近的中心点 关联起来,与 同一个中心点 关联的所有点聚成一类

  • 计算每一个组的平均值,将该组 所关联的中心点 移动到平均值的位置

  • 重复步骤2-4直至中心点不再变化。

 

下面是一个聚类示例:

 

技术图片

 

迭代 1 次

 

技术图片

 

迭代 3 次

 

技术图片

 

迭代 10 次

 

 

 

 

 

 

 

 

 

 

 

 

机器学习课程-第8周-聚类(Clustering)

标签:集中   移动   style   oid   决策   示例   距离   1.2   ec2   

原文地址:https://www.cnblogs.com/douzujun/p/10356077.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!