标签:add 祖国 标记 格式 不同 抽取 tor 构建 字符串
一:前言
和拉丁语系不同,亚洲语言是不用空格分开每个有意义的词的。而当我们进行自然语言处理的时候,大部分情况下,词汇是我们对句子和文章理解的基础,因此需要一个工具去把完整的文本中分解成粒度更细的词。
jieba就是这样一个非常好用的中文工具,是以分词起家的,但是功能比分词要强大很多。
二:基本分词函数与用法
jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode)
jieba.cut 方法接受三个输入参数:
jieba.cut_for_search 方法接受两个参数
该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
import jieba
list0 = jieba.cut(‘小明硕士毕业于中国科学院计算所,后在哈佛大学深造‘, cut_all=True)
print(‘全模式‘, list(list0))
# [‘小‘, ‘明‘, ‘硕士‘, ‘毕业‘, ‘于‘, ‘中国‘, ‘中国科学院‘, ‘科学‘, ‘科学院‘, ‘学院‘, ‘计算‘, ‘计算所‘, ‘‘, ‘‘, ‘后‘, ‘在‘, ‘哈佛‘, ‘哈佛大学‘, ‘大学‘, ‘深造‘]
list1 = jieba.cut(‘小明硕士毕业于中国科学院计算所,后在哈佛大学深造‘, cut_all=False)
print(‘精准模式‘, list(list1))
# [‘小明‘, ‘硕士‘, ‘毕业‘, ‘于‘, ‘中国科学院‘, ‘计算所‘, ‘,‘, ‘后‘, ‘在‘, ‘哈佛大学‘, ‘深造‘]
list2 = jieba.cut_for_search(‘小明硕士毕业于中国科学院计算所,后在哈佛大学深造‘)
print(‘搜索引擎模式‘, list(list2))
# [‘小明‘, ‘硕士‘, ‘毕业‘, ‘于‘, ‘中国‘, ‘科学‘, ‘学院‘, ‘科学院‘, ‘中国科学院‘, ‘计算‘, ‘计算所‘, ‘,‘, ‘后‘, ‘在‘, ‘哈佛‘, ‘大学‘, ‘哈佛大学‘, ‘深造‘]
很多时候我们需要针对自己的场景进行分词,会有一些领域内的专有词汇。
加载用户词典方式:
# 未加载用户词典时
st1=jieba.cut(‘王蒋小明在加州理工大学上学‘)
# [‘王‘, ‘蒋小明‘, ‘在‘, ‘加州‘, ‘理工大学‘, ‘上学‘]
print(list(st1))
# 加载用户词典时
# jieba自带的库一般在python都为site-packages\jieba\dict.txt
jieba.load_userdict(‘d.txt‘)
# 词典格式和dict.txt一样,一词一行,每行分三个部分(用空格隔开),词语 词频(可省) 词性(可省)
# 顺序不可颠倒,若filename为路径或二进制方式打开,则需为UTF-8
# 定义: 王蒋小明 加州理工大学 在d.txt中
st2=jieba.cut(‘王蒋小明在加州理工大学上学‘)
# [‘王蒋小明‘, ‘在‘, ‘加州理工大学‘, ‘上学‘]
print(list(st2))
调节词频
a=jieba.cut(‘在考试中将有监控‘)
print(list(a)) # [‘在‘, ‘考试‘, ‘中将‘, ‘有‘, ‘监控‘]
jieba.suggest_freq((‘中‘,‘将‘),True) # 通过调节词频,让中和将都被划出来
b=jieba.cut(‘在考试中将有监控‘)
print(list(b)) # [‘在‘, ‘考试‘, ‘中‘, ‘将‘, ‘有‘, ‘监控‘]
关键词提取:
import jieba.analyse
import jieba.analyse as analyse
lines = open(‘西游记.txt‘,‘r‘,encoding=‘utf8‘).read() # 西游记.txt为整本西游记小说
lists0=analyse.extract_tags(lines, topK=20, withWeight=False, allowPOS=())
print(list(lists0)) # 抽出整本小说的关键字
# [‘行者‘, ‘八戒‘, ‘师父‘, ‘三藏‘, ‘唐僧‘, ‘大圣‘, ‘沙僧‘, ‘妖精‘, ‘菩萨‘, ‘和尚‘, ‘那怪‘, ‘那里‘, ‘长老‘, ‘呆子‘, ‘徒弟‘, ‘怎么‘, ‘不知‘, ‘老孙‘, ‘国王‘, ‘一个‘]
import jieba.posseg as pseg
words = pseg.cut("我爱我的祖国")
for word, flag in words:
print(‘%s %s‘ % (word, flag))
# 我 r
# 爱 v
# 我 r
# 的 uj
# 祖国 n
注意,输入参数只接受 unicode
print("默认模式的tokenize")
result = jieba.tokenize(u‘自然语言处理非常有用‘)
for tk in result:
print("%s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
print("\n==================================================\n")
print("搜索模式的tokenize")
result = jieba.tokenize(u‘自然语言处理非常有用‘, mode=‘search‘)
for tk in result:
print("%s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
"""
默认模式的tokenize
自然语言 start: 0 end:4
处理 start: 4 end:6
非常 start: 6 end:8
有用 start: 8 end:10
==================================================
这是搜索模式的tokenize
自然 start: 0 end:2
语言 start: 2 end:4
自然语言 start: 0 end:4
处理 start: 4 end:6
非常 start: 6 end:8
有用 start: 8 end:10
"""
标签:add 祖国 标记 格式 不同 抽取 tor 构建 字符串
原文地址:https://www.cnblogs.com/yellowhat/p/10356965.html