码迷,mamicode.com
首页 > 其他好文 > 详细

19.2.11 [LeetCode 64] Minimum Path Sum

时间:2019-02-11 12:47:04      阅读:142      评论:0      收藏:0      [点我收藏+]

标签:lse   which   bec   opened   isp   led   cal   style   cli   

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
技术图片
 1 class Solution {
 2 public:
 3     int caluniquePaths(vector<vector<int>>&grid,vector<vector<int>>&mark,int m, int n) {
 4         int down = -1, right = -1;
 5         if (mark[m][n] != -1)return mark[m][n];
 6         int orim = grid.size(), orin = grid[0].size();
 7         if (m > 1)
 8             down = caluniquePaths(grid,mark, m - 1, n);
 9         if (n > 1)
10             right = caluniquePaths(grid,mark, m, n - 1);
11         if (down == -1)down = right;
12         if (right == -1)right = down;
13         mark[m][n] = grid[orim-m][orin-n]+min(down,right);
14         return mark[m][n];
15     }
16     int minPathSum(vector<vector<int>>& grid) {
17         int m = grid.size(), n = grid[0].size();
18         vector<vector<int>>mark(m+1, vector<int>(n+1, -1));
19         mark[1][1] = grid[m-1][n-1];
20         return caluniquePaths(grid,mark, m, n);
21     }
22 };
View Code

用的改的上一题的题解,但偏慢,不如改成dp快,估计是调用比较慢

技术图片
 1 class Solution {
 2 public:
 3     int minPathSum(vector<vector<int>>& grid) {
 4         int m = grid.size(), n = grid[0].size();
 5         vector<vector<int>>dp(m, vector<int>(n, INT_MAX));
 6         dp[0][0] = grid[0][0];
 7         for(int i=0;i<m;i++)
 8             for (int j = 0; j < n; j++) {
 9                 if (i == 0 && j == 0)continue;
10                 if (i == 0) {
11                     dp[i][j] = min(dp[i][j - 1] + grid[i][j], dp[i][j]);
12                 }
13                 else if (j == 0) {
14                     dp[i][j] = min(dp[i - 1][j] + grid[i][j], dp[i][j]);
15                 }
16                 else {
17                     dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j], dp[i][j]);
18                 }
19             }
20         return dp[m - 1][n - 1];
21     }
22 };
View Code

19.2.11 [LeetCode 64] Minimum Path Sum

标签:lse   which   bec   opened   isp   led   cal   style   cli   

原文地址:https://www.cnblogs.com/yalphait/p/10361215.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!