标签:style blog http color io os ar for sp
题意:一个有向图,每对一个结点操作,就可以触发连锁反应,使得该结点及它直接或间接指向的点均获得标记,问至少需要操作多少个结点使得所有结点获得标记
思路:有向图的强连通分量,用Tarjan缩点之后找出入度为0的点的个数,即为答案。跟UVA11504一样的题目。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 10010; const int MAXM = 100010; struct Edge{ int to, next; }edge[MAXM]; int head[MAXN], tot; int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; int Index, top; int scc; bool Instack[MAXN]; int num[MAXN], dg[MAXN]; int n, m; void init() { tot = 0; memset(head, -1, sizeof(head)); } void addedge(int u, int v) { edge[tot].to = v; edge[tot].next = head[u]; head[u] = tot++; } void Tarjan(int u) { int v; Low[u] = DFN[u] = ++Index; Stack[top++] = u; Instack[u] = true; for (int i = head[u]; i != -1; i = edge[i].next) { v = edge[i].to; if (!DFN[v]) { Tarjan(v); if (Low[u] > Low[v]) Low[u] = Low[v]; } else if (Instack[v] && Low[u] > DFN[v]) Low[u] = DFN[v]; } if (Low[u] == DFN[u]) { scc++; do { v = Stack[--top]; Instack[v] = false; Belong[v] = scc; num[scc]++; } while (v != u); } } void solve() { memset(Low, 0, sizeof(Low)); memset(DFN, 0, sizeof(DFN)); memset(num, 0, sizeof(num)); memset(Belong, 0, sizeof(Belong)); memset(Stack, 0, sizeof(Stack)); memset(Instack, false, sizeof(Instack)); Index = scc = top = 0; for (int i = 1; i <= n; i++) if (!DFN[i]) Tarjan(i); } int main() { int cas, t = 1; scanf("%d", &cas); while (cas--) { scanf("%d%d", &n, &m); init(); int u, v; for (int i = 0; i < m; i++) { scanf("%d%d", &u, &v); addedge(u, v); } solve(); memset(dg, 0, sizeof(dg)); for (int u = 1; u <= n; u++) { for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (Belong[u] != Belong[v]) { dg[Belong[v]]++; } } } int ans = 0; for (int i = 1; i <= scc; i++) { if (dg[i] == 0) ans++; } printf("Case %d: %d\n", t++, ans); } return 0; }
标签:style blog http color io os ar for sp
原文地址:http://blog.csdn.net/u011345461/article/details/40187605