标签:不可 加强 传输 abi soft 引擎 OLE 一点 需求
CAP原则又称CAP定理,是一个经典的分布式系统理论。CAP理论告诉我们:一个分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中两项。
在分布式环境下,一致性是指数据在多个副本之间能否保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致的状态。
对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新,于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数据),这就是典型的分布式数据不一致的情况。在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么 这样的系统就被认为具有强一致性
在分布式系统中要解决的一个重要问题就是数据的复制。在我们的日常开发经验中,相信很多开发人员都遇到过这样的问题:假设客户端C1将系统中的一个值K由V1更新为V2,但客户端C2无法立即读取到K的最新值,需要在一段时间之后才能 读取到。这很正常,因为数据库复制之间存在延时。
分布式系统对于数据的复制需求一般都来自于以下两个原因:
数据复制在可用性和性能方面给分布式系统带来的巨大好处是不言而喻的,然而数据复制所带来的一致性挑战,也是每一个系统研发人员不得不面对的。
所谓分布一致性问题,是指在分布式环境中引入数据复制机制之后,不同数据节点之间可能出现的,并无法依靠计算机应用程序自身解决的数据不一致的情况。简单讲,数据一致性就是指在对一个副本数据进行更新的时候,必须确保也能够更新其他的副本,否则不同副本之间的数据将不一致。
那么如何解决这个问题?一种思路是"既然是由于延时动作引起的问题,那我可以将写入的动作阻塞,直到数据复制完成后,才完成写入动作"。 没错,这似乎能解决问题,而且有一些系统的架构也确实直接使用了这个思路。但这个思路在解决一致性问题的同时,又带来了新的问题:写入的性能。如果你的应 用场景有非常多的写请求,那么使用这个思路之后,后续的写请求都将会阻塞在前一个请求的写操作上,导致系统整体性能急剧下降。
总得来说,我们无法找到一种能够满足分布式系统所有系统属性的分布式一致性解决方案。因此,如何既保证数据的一致性,同时又不影响系统运行的性能,是每一个分布式系统都需要重点考虑和权衡的。于是,一致性级别由此诞生:
可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。
"有限时间内"是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,"有限的时间内"是指系统设计之初就设计好的运行指标,通常不同系统之间有很 大的不同,无论如何,对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。
"返回结果"是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出队请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。
分区容错性约束了一个分布式系统具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。
网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络)中,由于一些特殊的原因导致这些子网络出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。 需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区。
既然一个分布式系统无法同时满足一致性、可用性、分区容错性三个特点,所以我们就需要抛弃一样。具体有如下几种选择:
需要明确的一点是,对于一个分布式系统而言,分区容错性是一个最基本的要求。因为既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构师往往需要把精力花在如何根据业务 特点在C(一致性)和A(可用性)之间寻求平衡。
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。接下来看一下BASE中的三要素:
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性----注意,这绝不等价于系统不可用。比如:
软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时
最终一致性强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
亚马逊首席技术官Werner Vogels在于2008年发表的一篇文章中对最终一致性进行了非常详细的介绍。他认为最终一致性时一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够胡渠道最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。
在实际工程实践中,最终一致性存在以下五类主要变种。
以上就是最终一致性的五类常见的变种,在时间系统实践中,可以将其中的若干个变种互相结合起来,以构建一个具有最终一致性的分布式系统。事实上,可以将其中的若干个变种相互结合起来,以构建一个具有最终一致性特性的分布式系统。事实上,最终一致性并不是只有那些大型分布式系统才设计的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。在同步方式中,数据的复制通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致。而在异步方式中,备库的更新往往存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的的数据将是旧的,因此就出现了不一致的情况。当然,无论是采用多次重试还是认为数据订正,关系型数据库还是能搞保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。
总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事务ACID特性是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起。
标签:不可 加强 传输 abi soft 引擎 OLE 一点 需求
原文地址:https://www.cnblogs.com/amunote/p/10363690.html