码迷,mamicode.com
首页 > 其他好文 > 详细

Spark LDA 实例

时间:2019-02-12 15:56:42      阅读:344      评论:0      收藏:0      [点我收藏+]

标签:pac   spark   optimize   cal   etop   code   lan   max   实例   

Spark LDA 实例

一、准备数据

数据格式为:documents: RDD[(Long, Vector)],其中:Long为文章ID,Vector为文章分词后的词向量;

通过分词以及数据格式的转换,转换成RDD[(Long, Vector)]即可。

二、建立模型

import org.apache.spark.mllib.clustering._
val ldaOptimizer = new OnlineLDAOptimizer().setOptimizeDocConcentration(true)
val lda = new LDA()
lda.setK(params.k)
.setMaxIterations(params.maxIterations)
.setDocConcentration(params.docConcentration)
.setTopicConcentration(params.topicConcentration)
.setOptimizer(ldaOptimizer)
.setCheckpointInterval(10)
.setSeed(1234)
val modelLDA: LDAModel = lda.run(corpus)
modelLDA.save(sc.sparkContext, params.modelPath)

三、模型参数

case class NewsParams(
    k: Int = 100,
    maxIterations: Int = 100,
    docConcentration: Double = -1,
    topicConcentration: Double = -1,
    stopWordFile: String = "zh_stopwords.txt",
    modelPath: String = "LDAModel.14.100",
    ldaJsonPath:String = "ldaModel.14.200.json",
    vocabPath: String = "vocab_info" )

四、结果输出

topicsMatrix以及topics(word,topic))输出。mllib上的lda不是分布式的,目前只存储topic的信息,而不存储doc的信息,如果获取只能使用ml中的lda或者通过以下代码实现。

val ldaModel = lda.run(documents)
val distLDAModel = ldaModel.asInstanceOf[DistributedLDAModel]
distLDAModel.topicDistributions

Spark LDA 实例

标签:pac   spark   optimize   cal   etop   code   lan   max   实例   

原文地址:http://blog.51cto.com/9283734/2349446

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!