标签:直接 回收对象 object 连续 内存泄漏 应用 复制 cms 内存碎片
java虚拟机在执行java程序的过程中会把它所管理的内存划分为不同的若干个不同的的数据区域,这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机的进程的启动而存在,有些区域依赖用户线程的启动和结束而创建和销毁,java虚拟机所管理的内存将会包括以下几个运行时数据区域
JVM分为堆区和栈区,还有方法区,初始化对象放在堆里面,引用放在栈里面,class类信息常量池(static常量和static变量)等放在方法区
给对象添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。
引用计数算法原理简单,实现容易,但是缺点是不能解决对象间循环引用问题,可能会造成内存泄漏。
这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连,用图论的话来说,就是从GC Roots到这个对象不可达时,则证明此对象是不可用的。
如下图所示,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
在java语言中,可作为GC Roots的对象包括下面几种:
最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。
之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
现在虚拟机都采用这种方法来回收新生代,将内存中新生代分为Eden和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活的对象一次性的复制到另外一块Survivor空间上,最后清理掉Eden和用过的Survivor空间。Eden区和Survivor区的大小比值为8:1
根据老年代的特点,出现了一种标记整理算法,同标记清除算法一样,但是后续步骤不是直接可回收对象进行清理,而是让所有存活对象向一端移动,然后直接清理掉端边界以外的内存。
串行收集器:串行收集器使用一个单独的线程进行收集,GC时服务有停顿时间
并行收集器:回收中使用多线程来来执行
CMS收集器:基于标记清除算法实现的,经过多次标记才会被清除。
G1收集器:从整体来看是基于“标记整理算法”来实现的收集器,从局部(两个Region之间)上来看是基于“复制算法”来实现的。CMS是一种以最短停顿时间为目标的收集器,响应优先选择CMS,吞吐量高选择G1
标签:直接 回收对象 object 连续 内存泄漏 应用 复制 cms 内存碎片
原文地址:https://www.cnblogs.com/nanlinghan/p/JVMGC.html