码迷,mamicode.com
首页 > 其他好文 > 详细

338. Counting Bits

时间:2019-02-16 21:59:04      阅读:176      评论:0      收藏:0      [点我收藏+]

标签:analysis   ack   cpp   rect   complex   log   out   http   orm   

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1‘s in their binary representation and return them as an array.

Example 1:

Input: 2
Output: [0,1,1]

Example 2:

Input: 5
Output: [0,1,1,2,1,2]

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n)/possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

 

Approach #1: Math. [C++]

class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> temp(num+1, 0);
        
        for (int i = 1; i <= num; ++i) {
            temp[i] = temp[i&(i-1)] + 1;
        }
        
        return temp;
    }
};

  

Analysis:

i     binary      count     i&(i-1)

0  0         0  

1  0001   1      0000  ->  0

2  0010   1      0000  0

3  0011   2      0010  2

4  0100   1      0000  0  

5  0101      2      0100  4

6  0110   2      0100  4

7  0111   3      0110   6

8  1000   1      0000  0

 

We can find some regular about:

the count of ‘1‘ in the i(binary) = the count of ‘1‘ in the i&(i-1)(binary) + 1;

temp[i] = temp[i&(i-1)] + 1;

 

Approach #2: bitset. [C++]

class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> res;
        for (int i = 0; i <= num; ++i) {
            res.push_back(bitset<32>(i).count());
        }
        return res;
    }
};

  

Analysis:

There is a trick of the function bitset. Using this function we can directly calculate the number of ‘1‘ in the i‘s binary form.

 

Reference:

http://www.cplusplus.com/reference/bitset/bitset/count/

http://www.cnblogs.com/grandyang/p/5294255.html

 

338. Counting Bits

标签:analysis   ack   cpp   rect   complex   log   out   http   orm   

原文地址:https://www.cnblogs.com/ruruozhenhao/p/10389412.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!