标签:return analysis solution present end ati NPU tis put
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies:
Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
Input: [1,2,3]
Output: [1,2] (of course, [1,3] will also be ok)
Example 2:
Input: [1,2,4,8]
Output: [1,2,4,8]
Approach #1: DP. [C++]
class Solution { public: vector<int> largestDivisibleSubset(vector<int>& nums) { int size = nums.size(); sort(nums.begin(), nums.end()); vector<int> dp(size, 1); vector<int> tmp(size, -1); vector<int> ans; if (size == 0) return ans; int idx = 0; for (int i = 0; i < size; ++i) { for (int j = 0; j < i; ++j) { if (nums[i] % nums[j] == 0 && dp[i] < dp[j] + 1) { dp[i] = dp[j] + 1; tmp[i] = j; } if (dp[i] > dp[idx]) idx = i; } } for (int i = idx; i != -1; i = tmp[i]) ans.push_back(nums[i]); //reverse(ans.begin(), ans.end()); return ans; } };
Analysis:
dp[i] : represent the number of elements in the subset which index from 0 to i.
tmp[i]: the previous factor‘s index of nums[i].
标签:return analysis solution present end ati NPU tis put
原文地址:https://www.cnblogs.com/ruruozhenhao/p/10389723.html