码迷,mamicode.com
首页 > 其他好文 > 详细

Hadoop Mapreduce 中的Partitioner

时间:2019-02-19 00:38:03      阅读:211      评论:0      收藏:0      [点我收藏+]

标签:默认   identity   分组   一个   shc   partition   ota   排序   效率   

Partitioner的作用的对Mapper产生的中间结果进行分片,以便将同一分组的数据交给同一个Reduce处理,Partitioner直接影响Reduce阶段的负载均衡。

MapReduce提供了两个Partitioner实现:HashPartitioner和TotalOederPartitioner。
HashPartitioner是默认实现,实现了一种基于哈希值的分片方法,代码如下:

public int getPartition(K2 key, V2 value, int numReduceTasks) {
     return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}

TotalOrderPartitioner提供了一种基于区间的分片方法,通常用在数据全排序中。
在MapReduce环境中,容易想到的全排序方案是归并排序,即在Map阶段,每个Map Task进行局部排序;在Reduce阶段,启动一个Reduce Task进行全局排序。由于作业只能有一个Reduce Task,因而reduce阶段会成为作业的瓶颈。
TotalOrderPartitioner能够按照大小将数据分成若干个区间(分片),并保证后一个区间的所有数据均大于前一个区间的所有数据。全排序的步骤如下:

  1. 数据采样。在Client端通过采样获取分片的分割点。Hadoop自带了几个采样算法,如IntercalSampler、RandomSampler、SplitSampler等。
  2. Map阶段。本阶段涉及两个组件,分别是Mapper和Partitioner。其中,Mapper可采用IdentityMapper,直接将输入数据输出,但Partitioner必须选用TotalOrderPartitioner,它将步骤1中获取的分割点保存到trie树中以便快速定位任意一个记录所在的区间,这样,每个Map Task产生R(Reduce Task 个数)个区间,且区间有序。TotalOrderPartitioner通过trie树查找每条记录所对应的Reduce Task编号。
  3. Reduce阶段。每个Reducer对分配到的区间数据进行局部排序,最终得到全排序数据。

基于TotalOrderPartitioner全排序的效率跟key分布规律和采样算法有直接关系;key值分布越均匀且采样越具有代表性,则Reduce Task负载越均衡,全排序效率越高。

Hadoop Mapreduce 中的Partitioner

标签:默认   identity   分组   一个   shc   partition   ota   排序   效率   

原文地址:https://www.cnblogs.com/wgyang/p/10398709.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!