标签:style blog http color io os ar for sp
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了。
题意:
这是完全独立的6个子问题。代码中是根据字符串的长度来区分问题编号的。
分析:
体会:
1 //#define LOCAL 2 #include <cstdio> 3 #include <cstring> 4 #include <string> 5 #include <algorithm> 6 #include <cmath> 7 #include <vector> 8 using namespace std; 9 10 struct Point 11 { 12 double x, y; 13 Point(double xx=0, double yy=0) :x(xx),y(yy) {} 14 }; 15 typedef Point Vector; 16 17 Point read_point(void) 18 { 19 double x, y; 20 scanf("%lf%lf", &x, &y); 21 return Point(x, y); 22 } 23 24 const double EPS = 1e-7; 25 const double PI = acos(-1.0); 26 27 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 28 29 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 30 31 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 32 33 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 34 35 bool operator < (const Point& a, const Point& b) 36 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 37 38 int dcmp(double x) 39 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 40 41 bool operator == (const Point& a, const Point& b) 42 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 43 44 double Dot(Vector A, Vector B) 45 { return A.x*B.x + A.y*B.y; } 46 47 double Length(Vector A) { return sqrt(Dot(A, A)); } 48 49 double Angle(Vector A, Vector B) 50 { return acos(Dot(A, B) / Length(A) / Length(B)); } 51 52 double Angle2(Vector A) { return atan2(A.y, A.x); } 53 54 Vector VRotate(Vector A, double rad) 55 { 56 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 57 } 58 59 Vector Normal(Vector A) 60 { 61 double l = Length(A); 62 return Vector(-A.y/l, A.x/l); 63 } 64 65 double Change(double r) { return r / PI * 180.0; } 66 67 double Cross(Vector A, Vector B) 68 { return A.x*B.y - A.y*B.x; } 69 70 struct Circle 71 { 72 double x, y, r; 73 Circle(double x=0, double y=0, double r=0):x(x), y(y), r(r) {} 74 Point point(double a) 75 { 76 return Point(x+r*cos(a), y+r*sin(a)); 77 } 78 }; 79 80 const int maxn = 1010; 81 char s[maxn]; 82 83 int ID(char* s) 84 { 85 int l = strlen(s); 86 switch(l) 87 { 88 case 19: return 0; 89 case 15: return 1; 90 case 23: return 2; 91 case 46: return 3; 92 case 33: return 4; 93 case 43: return 5; 94 default: return -1; 95 } 96 } 97 98 void Solve(double A1, double B1, double C1, double A2, double B2, double C2, double& ansx, double& ansy) 99 { 100 ansx = (B1*C2 - B2*C1) / (A1*B2 - A2*B1); 101 ansy = (C2*A1 - C1*A2) / (B1*A2 - B2*A1); 102 } 103 104 void problem0() 105 { 106 Point A, B, C; 107 scanf("%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y); 108 double A1 = B.x-A.x, B1 = B.y-A.y, C1 = (A.x*A.x-B.x*B.x+A.y*A.y-B.y*B.y)/2; 109 double A2 = C.x-A.x, B2 = C.y-A.y, C2 = (A.x*A.x-C.x*C.x+A.y*A.y-C.y*C.y)/2; 110 Point ans; 111 Solve(A1, B1, C1, A2, B2, C2, ans.x, ans.y); 112 double r = Length(ans - A); 113 printf("(%.6lf,%.6lf,%.6lf)\n", ans.x, ans.y, r); 114 } 115 116 void problem1() 117 { 118 Point A, B, C; 119 scanf("%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y); 120 double a = Length(B-C), b = Length(A-C), c = Length(A-B); 121 double l = a+b+c; 122 Point ans = (A*a+B*b+C*c)/l; 123 double r = fabs(Cross(A-B, C-B)) / l; 124 printf("(%.6lf,%.6lf,%.6lf)\n", ans.x, ans.y, r); 125 } 126 127 void problem2() 128 { 129 Circle C; 130 Point P, O; 131 scanf("%lf%lf%lf%lf%lf", &C.x, &C.y, &C.r, &P.x, &P.y); 132 double ans[2]; 133 O.x = C.x, O.y = C.y; 134 double d = Length(P-O); 135 int k = dcmp(d-C.r); 136 if(k < 0) 137 { 138 printf("[]\n"); 139 return; 140 } 141 else if(k == 0) 142 { 143 ans[0] = Change(Angle2(P-O)) + 90.0; 144 while(ans[0] >= 180.0) ans[0] -= 180.0; 145 while(ans[0] < 0) ans[0] += 180.0; 146 printf("[%.6lf]\n", ans[0]); 147 return; 148 } 149 else 150 { 151 double ag = asin(C.r/d); 152 double base = Angle2(P-O); 153 ans[0] = base + ag, ans[1] = base - ag; 154 ans[0] = Change(ans[0]), ans[1] = Change(ans[1]); 155 while(ans[0] >= 180.0) ans[0] -= 180.0; 156 while(ans[0] < 0) ans[0] += 180.0; 157 while(ans[1] >= 180.0) ans[1] -= 180.0; 158 while(ans[1] < 0) ans[1] += 180.0; 159 if(ans[0] >= ans[1]) swap(ans[0], ans[1]); 160 printf("[%.6lf,%.6lf]\n", ans[0], ans[1]); 161 } 162 } 163 164 vector<Point> sol; 165 struct Line 166 { 167 Point p; 168 Vector v; 169 Line() { } 170 Line(Point p, Vector v): p(p), v(v) {} 171 Point point(double t) 172 { 173 return p + v*t; 174 } 175 Line move(double d) 176 { 177 return Line(p + Normal(v)*d, v); 178 } 179 }; 180 Point GetIntersection(Line a, Line b) 181 { 182 Vector u = a.p - b.p; 183 double t = Cross(b.v, u) / Cross(a.v, b.v); 184 return a.p + a.v*t; 185 } 186 struct Circle2 187 { 188 Point c; //圆心 189 double r; //�径 190 Point point(double a) 191 { 192 return Point(c.x+r*cos(a), c.y+r*sin(a)); 193 } 194 }; 195 //两圆相交并返�交点个数 196 int getLineCircleIntersection(Line L, Circle2 C, vector<Point>& sol) 197 { 198 double t1, t2; 199 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; 200 double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r; 201 double delta = f*f - 4*e*g; //判别� 202 if(dcmp(delta) < 0) return 0; //相离 203 if(dcmp(delta) == 0) //相切 204 { 205 t1 = t2 = -f / (2 * e); 206 sol.push_back(L.point(t1)); 207 return 1; 208 } 209 //相交 210 t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(L.point(t1)); 211 t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(L.point(t2)); 212 return 2; 213 } 214 void problem3() 215 { 216 Circle2 C; 217 Point A, B; 218 scanf("%lf%lf%lf%lf%lf%lf%lf", &C.c.x, &C.c.y, &A.x, &A.y, &B.x, &B.y, &C.r); 219 Vector v = (A-B)/Length(A-B)*C.r; 220 //printf("%lf\n", Length(v)); 221 Point p1 = A + Point(-v.y, v.x); 222 Point p2 = A + Point(v.y, -v.x); 223 //printf("%lf\n%lf", Length(p1-C.c), Length(p2-C.c)); 224 Line L1(p1, v), L2(p2, v); 225 226 sol.clear(); 227 int cnt = getLineCircleIntersection(L1, C, sol); 228 cnt += getLineCircleIntersection(L2, C, sol); 229 sort(sol.begin(), sol.end()); 230 if(cnt == 0) { printf("[]\n"); return; } 231 printf("["); 232 for(int i = 0; i < cnt-1; ++i) printf("(%.6lf,%.6lf),", sol[i].x, sol[i].y); 233 printf("(%.6lf,%.6lf)]\n", sol[cnt-1].x, sol[cnt-1].y); 234 } 235 236 void problem4() 237 { 238 double r; 239 Point A, B, C, D, E, ans[4]; 240 scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y, &D.x, &D.y, &r); 241 Line a(A, B-A), b(C, D-C); 242 Line L1 = a.move(r), L2 = a.move(-r); 243 Line L3 = b.move(r), L4 = b.move(-r); 244 ans[0] = GetIntersection(L1, L3); 245 ans[1] = GetIntersection(L1, L4); 246 ans[2] = GetIntersection(L2, L3); 247 ans[3] = GetIntersection(L2, L4); 248 sort(ans, ans+4); 249 printf("["); 250 for(int i = 0; i < 3; ++i) printf("(%.6lf,%.6lf),", ans[i].x, ans[i].y); 251 printf("(%.6lf,%.6lf)]\n", ans[3].x, ans[3].y); 252 } 253 254 int getCircleCircleIntersection(Circle2 C1, Circle2 C2, vector<Point>& sol) 255 { 256 double d = Length(C1.c - C2.c); 257 if(dcmp(d) == 0) 258 { 259 if(dcmp(C1.r - C2.r) == 0) return -1; 260 return 0; 261 } 262 if(dcmp(C1.r + C2.r - d) < 0) return 0; 263 if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; 264 265 double a = Angle2(C2.c - C1.c); 266 double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d)); 267 Point p1 = C1.point(a+da), p2 = C1.point(a-da); 268 sol.push_back(p1); 269 if(p1 == p2) return 1; 270 sol.push_back(p2); 271 return 2; 272 } 273 274 void problem5() 275 { 276 Circle2 C1, C2; 277 double r; 278 vector<Point> sol; 279 scanf("%lf%lf%lf%lf%lf%lf%lf", &C1.c.x, &C1.c.y, &C1.r, &C2.c.x, &C2.c.y, &C2.r, &r); 280 double d = Length(C1.c - C2.c); 281 C1.r += r, C2.r += r; 282 if(dcmp(C1.r+C2.r-d) < 0) { printf("[]\n"); return; } 283 int n = getCircleCircleIntersection(C1, C2, sol); 284 sort(sol.begin(), sol.end()); 285 printf("["); 286 for(int i = 0; i < n-1; ++i) printf("(%.6lf,%.6lf),", sol[i].x, sol[i].y); 287 printf("(%.6lf,%.6lf)]\n", sol[n-1].x, sol[n-1].y); 288 } 289 290 int main() 291 { 292 #ifdef LOCAL 293 freopen("12304in.txt", "r", stdin); 294 #endif 295 296 while(scanf("%s", s) == 1) 297 { 298 int proID = ID(s); 299 switch(proID) 300 { 301 case 0: problem0(); break; 302 case 1: problem1(); break; 303 case 2: problem2(); break; 304 case 3: problem3(); break; 305 case 4: problem4(); break; 306 case 5: problem5(); break; 307 default: break; 308 } 309 } 310 311 return 0; 312 }
UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
标签:style blog http color io os ar for sp
原文地址:http://www.cnblogs.com/AOQNRMGYXLMV/p/4032240.html