码迷,mamicode.com
首页 > 其他好文 > 详细

【费用流】【网络流24题】【P4014】 分配问题.md

时间:2019-02-20 17:21:44      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:return   etc   bool   费用流   get   queue   define   front   size   

Description

\(n\) 件工作要分配给 \(n\) 个人做。第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(C_{i,j}\) 。试设计一个将 \(n\) 件工作分配给 \(n\) 个人做的分配方案,使产生的总效益最大。

Input

文件的第 \(1\) 行有 \(1\) 个正整数 \(n\),表示有 \(n\) 件工作要分配给 \(n\) 个人做。

接下来的 \(n\) 行中,每行有 \(n\) 个整数 \(C_{i,j}\),表示第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(C_{ij}\)

Output

两行分别输出最小总效益和最大总效益。

Hint

\(1~\leq~n~\leq~100\)

Solution

先考虑最小收益,由于必须所有的工作都被分配,所以这个限制可以转化为最大流,由于是最小费用,所以可以转化成最小费用最大流。

将人和工作之间连边,容量为 \(1\),费用为效益。建立超级源点超级汇点,源点连向人,容量为 \(1\),费用为 \(0\)。工作连向汇点,容量为 \(1\),费用为 \(0\)。这样保证了一个任务选且被选一次,同时费用即为收益。

考虑最大收益:将所有费用取相反数,求出答案再取相反即可。

Code

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define ci const int
#define cl const long long

typedef long long int ll;

namespace IPT {
    const int L = 1000000;
    char buf[L], *front=buf, *end=buf;
    char GetChar() {
        if (front == end) {
            end = buf + fread(front = buf, 1, L, stdin);
            if (front == end) return -1;
        }
        return *(front++);
    }
}

template <typename T>
inline void qr(T &x) {
    char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
    char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    if (ch == '.') {
        ch = IPT::GetChar();
        double base = 1;
        while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    }
    if (lst == '-') x = -x;
}

namespace OPT {
    char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
    if (x < 0) {x = -x, putchar('-');}
    int top=0;
    do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
    while (top) putchar(OPT::buf[top--]);
    if (pt) putchar(aft);
}

const int maxn = 210;
const int INF = 0x3f3f3f3f;

struct Edge {
    int from, to, flow, fee;
    Edge *nxt, *bk;
};
Edge *hd[maxn], *pre[maxn];
inline void cont(Edge *u, Edge *v, int from, int to, int fl, int fe) {
    u->from = from; u->to = to; u->flow = fl; u->fee = fe; u->bk = v;
    u->nxt = hd[from]; hd[from] = u;
}
inline void conet(int from, int to, int fl, int fe) {
    Edge *u = new Edge, *v = new Edge;
    cont(u, v, from, to, fl, fe); cont(v, u, to, from, 0, -fe);
}

int n, s, t, ans;
int cost[maxn], maxflw[maxn], MU[maxn][maxn];
bool inq[maxn];
std::queue<int>Q;

bool SPFA();
void argu();

int main() {
    freopen("1.in", "r", stdin);
    qr(n);
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            qr(MU[i][j]); conet(i, j + n, 1, MU[i][j]);
        }
    }
    s = (n << 1) | 1; t = (n << 1) + 2;
    for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
    for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
    ans = 0;
    while (SPFA()) argu();
    qw(ans, '\n', true);
    memset(hd, 0, sizeof hd);
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) conet(i, j + n, 1, -MU[i][j]);
    }
    for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
    for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
    ans = 0;
    while (SPFA()) argu();
    qw(-ans, '\n', true);
    return 0;
}

bool SPFA() {
    memset(cost, 0x3f, sizeof cost);
    memset(inq, 0, sizeof inq);
    memset(pre, 0, sizeof pre);
    memset(maxflw, 0, sizeof maxflw);
    cost[s] = 0; Q.push(s); maxflw[s] = INF;
    while (!Q.empty()) {
        int h = Q.front(); Q.pop(); inq[h] = false;
        if (!maxflw[h]) continue;
        for (Edge *e = hd[h]; e; e = e->nxt) if (e->flow > 0) {
            int to = e->to;
            if (cost[to] > (cost[h] + e->fee)) {
                cost[to] = cost[h] + e->fee;
                maxflw[to] = std::min(maxflw[h], e->flow);
                if (!inq[to]) Q.push(to);
                inq[to] = true; pre[to] = e;
            }
        }
    }
    return cost[t] != INF;
}

void argu() {
    for (Edge *e = pre[t]; e; e = pre[e->from]) {
        e->flow -= maxflw[t];
        e->bk->flow += maxflw[t];
    }
    ans += maxflw[t] * cost[t];
}

【费用流】【网络流24题】【P4014】 分配问题.md

标签:return   etc   bool   费用流   get   queue   define   front   size   

原文地址:https://www.cnblogs.com/yifusuyi/p/10407687.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!