码迷,mamicode.com
首页 > 其他好文 > 详细

P2473 [SCOI2008]奖励关(状压+期望dp)

时间:2019-02-21 00:17:46      阅读:195      评论:0      收藏:0      [点我收藏+]

标签:输入输出   etc   小数   从后往前   ADG   选择   格式   inf   class   

题目描述

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

输入输出格式

输入格式:

 

第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种

宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各

宝物编号为1到n),以0结尾。

 

输出格式:

 

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

 

输入输出样例

输入样例#1: 复制
1 2
1 0
2 0
输出样例#1: 复制
1.500000
输入样例#2: 复制
6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0
输出样例#2: 复制
10.023470

说明

1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。

 

 

 


 


 


 

 

拿到这题,一看最优策略的期望值

e。。 f [i,j] 表示到第k次 并且现在的集合是j的最大值

开始以为能转移,因为我太native,转移的时候求的是最大值,但是又可能有多个状态转移到一个状态

所以我是取max还是取和呢。。。所以挂了

发现都说要从后往前推,这保证了都是从合法的状态转移而来且求加和就行了

技术图片


 


 


 

 1 #include <cmath>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <iostream>
 5 #include <algorithm>
 6 using namespace std;
 7 inline int read() {
 8     int res = 0; bool bo = 0; char c;
 9     while (((c = getchar()) < 0 || c > 9) && c != -);
10     if (c == -) bo = 1; else res = c - 48;
11     while ((c = getchar()) >= 0 && c <= 9)
12         res = (res << 3) + (res << 1) + (c - 48);
13     return bo ? ~res + 1 : res;
14 }
15 const int M = 105, N = 17;
16 int K, n, p[N], sta[N];
17 double f[M][1 << 15];
18 void chkmax(double &a, double b) {a = max(a, b);}
19 int main() {
20     int i, j, k, x; K = read(); n = read();
21     for (i = 1; i <= n; i++) {
22         p[i] = read(); while (x = read())
23             sta[i] = sta[i] | (1 << x - 1);
24     }
25     for (i = K; i >= 1; i--) for (j = 0; j < (1 << n); j++) {
26         for (k = 1; k <= n; k++) if ((j & sta[k]) == sta[k])
27             f[i][j] += max(f[i + 1][j], f[i + 1][j | (1 << k - 1)] + p[k]);
28         else f[i][j] += f[i + 1][j];
29         f[i][j] /= n;
30     }
31     printf("%.6lf\n", f[1][0]);
32     return 0;
33 }

 

还是太垃圾了。

 

P2473 [SCOI2008]奖励关(状压+期望dp)

标签:输入输出   etc   小数   从后往前   ADG   选择   格式   inf   class   

原文地址:https://www.cnblogs.com/zhangbuang/p/10409841.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!