标签:des style color io os ar for sp div
4 0 3 2 1 2 1 3
4 2HintCase 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<limits.h> typedef long long LL; using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=20000+100; const int maxm=100000; struct node{ int u,v; int next; }e[maxm]; int head[maxn],cntE; int DFN[maxn],low[maxn]; int s[maxm],top,index,cnt; int belong[maxn],instack[maxn]; int in[maxn],out[maxn]; int n,m; void init() { top=cntE=0; index=cnt=0; CLEAR(DFN,0); CLEAR(head,-1); CLEAR(instack,0); // CLEAR(belong,0); } void addedge(int u,int v) { e[cntE].u=u;e[cntE].v=v; e[cntE].next=head[u]; head[u]=cntE++; } void Tarjan(int u) { DFN[u]=low[u]=++index; instack[u]=1; s[top++]=u; for(int i=head[u];i!=-1;i=e[i].next) { int v=e[i].v; if(!DFN[v]) { Tarjan(v); low[u]=min(low[u],low[v]); } else if(instack[v]) low[u]=min(low[u],DFN[v]); } int v; if(DFN[u]==low[u]) { cnt++; do{ v=s[--top]; belong[v]=cnt; instack[v]=0; }while(u!=v); } } void work() { REPF(i,1,n) if(!DFN[i]) Tarjan(i); if(cnt<=1) { puts("0"); return ; } CLEAR(in,0); CLEAR(out,0); for(int i=0;i<cntE;i++) { int u=e[i].u,v=e[i].v; if(belong[u]!=belong[v]) in[belong[v]]++,out[belong[u]]++; } int d_1=0,d_2=0; REPF(i,1,cnt) { if(!in[i]) d_1++; if(!out[i]) d_2++; } printf("%d\n",max(d_1,d_2)); } int main() { int u,v; while(~scanf("%d%d",&n,&m)) { init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); addedge(u,v); } work(); } return 0; }
HDU 3836 Equivalent Sets(Tarjan+缩点)
标签:des style color io os ar for sp div
原文地址:http://blog.csdn.net/u013582254/article/details/40201893