标签:两种 cout goto for ++i back white ring oid
A,B很简单,跳过了。
C题规律相当明显,可以直接对\(2^n-1\)打表,也可以不打表直接算最大因数。
D题两种操作转化一下DP即可。
E题考虑查分数组不变的性质。
F题考虑dfs时动态维护每个叶子的深度,从一个节点走向它的孩子相当于孩子对应的区间加,不包含孩子的区间减。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int P=1050000;
const int N=500010;
int u;
ll st[P],tag[P],tg;
void pushup(int x){
st[x]=min(st[x<<1],st[x<<1|1])+tag[x];
}
void Add(int s,int t,ll v){
int ss=u+s,tt=u+t;
for (s+=u-1,t+=u+1; s^t^1; pushup(ss>>=1),pushup(tt>>=1),s>>=1,t>>=1){
if (~s&1) st[s^1]+=v,tag[s^1]+=v;
if (t&1) st[t^1]+=v,tag[t^1]+=v;
}
for (s>>=1,t>>=1; s!=t; s>>=1,t>>=1) pushup(s),pushup(t);
for (; s; s>>=1) pushup(s);
}
ll ask(int s,int t){
ll retl=LLONG_MAX>>1,retr=retl;
int ss=u+s,tt=u+t;
for (s+=u-1,t+=u+1; s^t^1; retl+=tag[ss>>=1],retr+=tag[tt>>=1],s>>=1,t>>=1){
if (~s&1) retl=min(retl,st[s^1]);
if (t&1) retr=min(retr,st[t^1]);
}
for (s>>=1,t>>=1; s!=t; s>>=1,t>>=1) retl+=tag[s],retr+=tag[t];
retl=min(retl,retr);
for (; s; s>>=1) retl+=tag[s];
return retl;
}
int clk,dfn[N],en[N];
vector<pair<int,int> > g[N];
vector<int> a[N];
ll ans[N];
int la[N],ra[N];
void dfs(int x,ll dep){
//cerr<<x<<" "<<dep<<endl;
dfn[x]=++clk;
if (!g[x].size()){
st[u+clk]=dep;
en[x]=clk;
return;
}
st[u+clk]=LLONG_MAX>>1;
for (auto j:g[x])
dfs(j.first,dep+j.second);
en[x]=clk;
}
void dfs2(int x){
for (auto j:a[x]) ans[j]=tg+ask(la[j],ra[j]);
for (auto j:g[x]){
tg+=j.second;
Add(dfn[j.first],en[j.first],-j.second*2);
dfs2(j.first);
Add(dfn[j.first],en[j.first],j.second*2);
tg-=j.second;
}
}
int n,q;
int main(){
scanf("%d%d",&n,&q);
for (int i=2; i<=n; ++i){
int x,y;
scanf("%d%d",&x,&y);
g[x].push_back(make_pair(i,y));
}
for (u=1; u<n; u<<=1);
--u;
dfs(1,0);
//for (int i=u+1; i<=u+n; ++i) cout<<st[i]<<" "; cout<<endl;
for (int i=u+n+1; i<=u+u+1; ++i) st[i]=LLONG_MAX>>1;
for (int i=u; i; --i) st[i]=min(st[i<<1],st[i<<1|1]);
for (int i=1; i<=q; ++i){
int x;
scanf("%d%d%d",&x,&la[i],&ra[i]);
a[x].push_back(i);
}
//cerr<<"????"<<endl;
dfs2(1);
for (int i=1; i<=q; ++i) cout<<ans[i]<<'\n';
}
这个zkw写得我好恶心,早知道还是写普通线段树了。
G题非常神仙,先考虑构造一个
1------2---------3
|______4
来代替1这个原有的白点。
然后原图就没有染过色的点了。
考虑有度为4的点那么先手必胜。
如果有度为3且第二长的儿子比2长的点,那么先手必胜。
考虑你现在只可能有最多两个度为3的点了。
只有0或1个3度点,那么是和局。
两个的话,必定组成一根“骨头”,分奇偶讨论即可。
#include <bits/stdc++.h>
using namespace std;
vector<vector<int> > G;
vector<bool> vis;
void aDD(int x,int y){
if (x>=G.size()) G.resize(x+1);
if (y>=G.size()) G.resize(y+1);
G[x].push_back(y);
G[y].push_back(x);
}
bool dfs(int x,int len){
vis[x]=1;
if (G[x].size()>=3&&len&&len%2==0) return 1;
for (auto j:G[x])
if (!vis[j]&&dfs(j,len+1)) return 1;
return 0;
}
int n,t;
string s;
int main(){
ios_base::sync_with_stdio(false); cin.tie(NULL);
int t; cin>>t;
while (t--){
cin>>n;
G=*(new vector<vector<int> >(2));
vis.clear();
for (int i=1; i<n; ++i){
int u,v;
cin>>u>>v;
aDD(u,v);
}
int cnt=n;
cin>>s;
for (int i=1; i<=n; ++i)
if (s[i-1]=='W'){
aDD(i,cnt+1);
aDD(cnt+1,cnt+2);
aDD(cnt+1,cnt+3);
cnt+=3;
}
vis.resize(cnt+1);
for (int i=1; i<=cnt; ++i) if (G[i].size()>=4) goto l1;
for (int i=1; i<=cnt; ++i)
if (G[i].size()>=3){
vector<int> v;
for (auto j:G[i])
v.push_back(G[j].size());
sort(v.rbegin(),v.rend());
if (v[1]>=2) goto l1;
}
for (int i=1; i<=cnt; ++i)
if (G[i].size()>=3&&dfs(i,0)) goto l1;
puts("Draw");
continue;
l1:puts("White");
}
}
H题虽然不那么神仙,但是代码难度爆炸,错了也不知道怎么调QAQ
首先每个符合区间限制的数肯定一一对应正则表达式的个数。
于是你只需要统计正则表达式的个数就可以了。
将正则表达式映射到AC自动机上,
DP时在AC自动机上走就行了,同时询问一下该节点剩余长度匹配的正则表达式个数。
并不需要关心后面具体填了什么,因为只要长度够,就符合正则表达式。
一堆细节,十分恶心。
#include <bits/stdc++.h>
using namespace std;
const int N=2005;
const int M=805;
const int NODE=M*20;
const int INF=~0u>>1;
int trans[NODE][10],fail[NODE],tot;
int val[NODE][M];
int f[N][NODE];
bool way[N][NODE];
string l,r;
int n,m;
void depth(int now,int p,bool dlim,bool ulim){
if (now>=m){
//cerr<<"ADD"<<p<<" "<<0<<endl;
++val[p][0];
return;
}
if (!dlim&&!ulim){
//cerr<<"ADD"<<p<<" "<<m-now<<endl;
++val[p][m-now];
return;
}
//cerr<<now<<" "<<l.size()<<" "<<r.size()<<endl;
int llim=(dlim?l[now]-'0':0);
int rlim=(ulim?r[now]-'0':9);
//cerr<<"????"<<llim<<" "<<rlim<<endl;
for (int i=max(llim,(int)!now); i<=rlim; ++i){
//cerr<<"I"<<p<<" "<<i<<endl;
int to=(trans[p][i]?trans[p][i]:trans[p][i]=++tot);
//cerr<<"dfs"<<p<<" "<<i<<" "<<to<<endl;
depth(now+1,to,dlim&&i==llim,ulim&&i==rlim);
//cerr<<"ED"<<endl;
}
}
void build_fail(){
/*for (int i=0; i<=tot; ++i)
for (int j=0; j<=m; ++j)
cerr<<i<<" "<<j<<" "<<val[i][j]<<endl;*/
//cerr<<val[8][2]<<endl;
queue<int> q; q.push(0);
while (!q.empty()){
int x=q.front(); q.pop();
//cerr<<x<<" ";
for (int i=0; i<=9; ++i){
int v=trans[x][i];
//cerr<<"BBBBBB"<<x<<" "<<i<<" "<<fail[x]<<" "<<v<<endl;
if (v){
q.push(v);
if (x){
fail[v]=trans[fail[x]][i];
}
for (int i=0; i<=m; ++i)
val[v][i]+=val[fail[v]][i];
}
else trans[x][i]=trans[fail[x]][i];
}
}
for (int i=0; i<=tot; ++i){
for (int j=1; j<=m; ++j)
val[i][j]+=val[i][j-1];
//cerr<<fail[i]<<endl;
//for (int j=0; j<=m; ++j)
//cout<<i<<" "<<j<<" "<<val[i][j]<<endl;
}
}
int main(){
//fprintf(stderr,"cfh.in");
ios::sync_with_stdio(0);
cin>>l>>r>>n;
/*for (int i=1; i<=800; ++i) l+="1";
for (int i=1; i<=800; ++i) r+="2";
n=2000;*/
if (l.size()==r.size()){
m=r.size();
depth(0,0,1,1);
}
else{
int p=m=l.size();
depth(0,0,1,0);
//cerr<<"END"<<endl;
m=r.size();
while (l.size()<m) l="0"+l;
depth(0,0,0,1);
for (int i=p+1; i<m; ++i) ++val[0][i];
}
//return 0;
build_fail();
//cerr<<"!!!"<<endl;
//return 0;
//return 0;
/*for (int i=0; i<=tot; ++i){
cerr<<"I----"<<i<<endl;
cerr<<"fail"<<fail[i]<<endl;
for (int j=0; j<=9; ++j) cerr<<trans[i][j]<<" ";
cerr<<endl;
}*/
//return 0;
for (int i=0; i<=n; ++i)
for (int j=0; j<=tot; ++j)
f[i][j]=-INF;
f[0][0]=val[0][min(n,m)];
for (int i=0; i<n; ++i){
for (int j=0; j<=tot; ++j){
for (int k=0; k<=9; ++k){
int v=trans[j][k];
f[i+1][v]=max(f[i+1][v],f[i][j]+val[v][min(n-i-1,m)]);
//cerr<<"dp"<<i+1<<" "<<v<<" "<<f[i+1][v]<<" "<<f[0][0]<<" "<<val[v][min(n-i-1,m)]<<" "<<j<<endl;
}
}
}
int ans=0;
for (int i=0; i<=tot; ++i) ans=max(ans,f[n][i]);
cout<<ans<<'\n';
for (int i=0; i<=tot; ++i) way[n][i]=(f[n][i]==ans);
for (int i=n-1; i>=0; --i)
for (int j=0; j<=tot; ++j){
for (int k=0; k<=9; ++k){
int v=trans[j][k];
if (way[i+1][v]&&f[i+1][v]==f[i][j]+val[v][min(n-i-1,m)]){
way[i][j]=1;
break;
}
}
}
int now=0,len=0;
while (len<n){
for (int k=0; k<=9; ++k){
int v=trans[now][k];
if (way[len+1][v]&&f[len+1][v]==f[len][now]+val[v][min(n-len-1,m)]){
now=v;
cout<<k;
break;
}
}
++len;
}
}
标签:两种 cout goto for ++i back white ring oid
原文地址:https://www.cnblogs.com/Yuhuger/p/10420898.html