标签:math 进制 eof codec 取值 etc 观察 return names
预处理后主席树维护
首先得出最后的答案为 \(\sum_{i=l}^{r}{min(right[i],r)-i+1}\)
那么首要问题就是如何求出\(right[i]\)
考虑当i--j-1是上升时使区间i--j是上升的
即sum[i-1]^sum[j-1]<=sum[i-1]^sum[j]
观察到两边有差异的是sum[j-1]和sum[j] 也就意味着sum[j-1]和sum[j]的不同会对i的取值有限制
假设k为二进制下sum[j-1]与sum[j]最高的不同位
如果sum[j]此位为1对i的限制是sum[i-1]的此位不能为1
如果sum[j]此位为0对i的限制是sum[i-1]的此位不能为0
通过枚举每一位的限制即可得\(ri[i]\)的最大合理值
接下来就是利用主席数维护答案了
\(\sum_{i=l}^{r}{min(right[i],r)-i+1}\)
我们可以对于所有的\(ri[i]\)建设主席数 维护两个值
1.所有\(ri[i]\)在i--j的范围内总和sum
2.所有\(ri[i]\)在i--j的范围内有几个cnt
最后的答案及为l--r内\(ri[i]\)的值在l--r内的sum+l--r内\(ri[i]\)的值大于r的cnt\(\times\)r-l--r所有数字和+(r-l+1)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=10000005;
ll n,t,Q,x,y,l,r,tot,ans;
ll root[maxn],ri[maxn],lf[maxn],cnt[maxn],sum[maxn],a[maxn],f[maxn];
ll p[32][2];
ll read()
{
ll ch=0,x=0;while(ch=getchar(),ch<‘0‘||ch>‘9‘);
while(x=x*10+ch-48,ch=getchar(),ch>=‘0‘&&ch<=‘9‘);
return x;
}
ll build(ll l,ll r)
{
ll rt=++tot;
if(l<r)
{
ll mid=(l+r)>>1;
lf[rt]=build(l,mid);
ri[rt]=build(mid+1,r);
}
return rt;
}
ll updata(ll pre,ll l,ll r,ll t)
{
ll rt=++tot;lf[rt]=lf[pre];ri[rt]=ri[pre];sum[rt]=sum[pre]+t;cnt[rt]=cnt[pre]+1;
if(l<r)
{
ll mid=(l+r)>>1;
if(t<=mid)lf[rt]=updata(lf[pre],l,mid,t);
else ri[rt]=updata(ri[pre],mid+1,r,t);
}
return rt;
}
ll getsum(ll x,ll y,ll l,ll r,ll L,ll R)
{
if(L<=l&&r<=R)return sum[y]-sum[x];
ll mid=(l+r)>>1,Tans=0;
if(L<=mid)Tans+=getsum(lf[x],lf[y],l,mid,L,R);
if(R>mid)Tans+=getsum(ri[x],ri[y],mid+1,r,L,R);
return Tans;
}
ll getcnt(ll x,ll y,ll l,ll r,ll L,ll R)
{
if(L<=l&&r<=R)return cnt[y]-cnt[x];
ll mid=(l+r)>>1,Tans=0;
if(L<=mid)Tans+=getcnt(lf[x],lf[y],l,mid,L,R);
if(R>mid)Tans+=getcnt(ri[x],ri[y],mid+1,r,L,R);
return Tans;
}
ll Sum(ll r,ll l)
{
return r*(r-1)/2-l*(l-1)/2;
}
int main()
{
n=read();t=read();
for(ll i=1;i<=n;i++)a[i]=read(),a[i]^=a[i-1];
memset(p,63,sizeof(p));Q=read();
for(ll i=n;i>=1;i--)
{
f[i]=n;
for(ll j=30;j>=0;j--)f[i]=min(f[i],p[j][(a[i-1]>>j)&1]-1);
for(ll j=30;j>=0;j--)if(((a[i]>>j)&1)^((a[i-1]>>j)&1)){
p[j][(a[i]>>j)&1]=min(p[j][(a[i]>>j)&1],i);break;
}
}
root[0]=build(1,n);
for(ll i=1;i<=n;i++)root[i]=updata(root[i-1],1,n,f[i]);
for(ll i=1;i<=Q;i++)
{
x=read();y=read();
x=(x+ans*t)%n+1;y=(y+ans*t)%n+1;l=min(x,y);r=max(x,y);
//printf("%d %d %d\n",getsum(root[l-1],root[r],1,n,l,r),getcnt(root[l-1],root[r],1,n,r+1,n),Sum(r,l));
ans=getsum(root[l-1],root[r],1,n,l,r)+r*getcnt(root[l-1],root[r],1,n,r+1,n)-Sum(r,l-1);
printf("%lld\n",ans);
}
return 0;
}
[codechef]SnackDown 2017 Online Elimination Round Prefix XOR
标签:math 进制 eof codec 取值 etc 观察 return names
原文地址:https://www.cnblogs.com/DavidJing/p/10425860.html